Nueces Delta Salinity Effects from Pumping Freshwater into the Rincon Bayou: 2009 to 2016

Final Report
CBBEP Publication - 112
Project Number -1611
August 2016

Prepared by:
Larry Lloyd, Principal Investigator
Conrad Blucher Institute for Surveying and Science
Texas A&M University-Corpus Christi
6300 Ocean Drive, Corpus Christi, TX 78412
Larry.Lloyd@tamucc.edu
Phone: (361) 825-5759 office

Submitted to:
Coastal Bend Bays & Estuaries Program
615 N. Upper Broadway, Suite 1200
Corpus Christi, TX 78401

The views expressed herein are those of the authors and do not necessarily reflect the views of CBBEP or other organizations that may have provided funding for this project.
Nueces Delta Salinity Effects from Pumping Freshwater into the Rincon Bayou: 2009 to 2016

Final Report by:

Larry Lloyd, Principal Investigator
Conrad Blucher Institute for Surveying and Science
Texas A&M University-Corpus Christi
6300 Ocean Drive, Corpus Christi, TX 78412
Larry.Lloyd@tamucc.edu
Phone: (361) 825-5759 office

Nueces Delta Environmental Monitoring Project 1611
Reporting period: September 1, 2015 to August 31, 2016
Date of submission: August 20, 2016

SUBMITTED TO:

Coastal Bend Bays & Estuaries Program
615 N. Upper Broadway, Suite 1200
Corpus Christi, TX 78401
TABLE OF CONTENTS

Introduction.. 4
Methods.. 7
Results and Discussion... 10
Conclusions.. 21
References... 22

List of Tables

Table 1. Capacity of the Rincon Bayou Pipeline... 5
Table 2. Rincon Bayou Pipeline pumping events to date... 11
Table 3. Total rainfall per year for NUDEWX and CRP.. 13

List of Figures

Figure 1. Nueces Delta, Corpus Christi, Texas, USA... 5
Figure 2. Pictures of Rincon Bayou Pipeline intake and outfall... 6
Figure 3. Location of salinity monitoring stations... 7
Figure 4. Remote data retrieval from monitoring stations... 9
Figure 5. Regular exchange of datasondes at monitoring stations....................................... 10
Figure 6. Rincon Bayou pumping events by sampling year.. 12
Figure 7. Total amount of freshwater pumped for each fiscal year..................................... 13
Figure 8. Drought conditions throughout the state of Texas.. 14
Figure 9. NUDE2 salinity and pumping events for current year... 16
Figure 10. Individual pumping events and salinity values for current year......................... 17
Figure 11. Salinity and tidal variations at SALT08 during a pumping event....................... 21
ACKNOWLEDGEMENTS

We would like to thank the Coastal Bend Bays & Estuaries Program for funding this project. We particularly thank Dominic Burch from the Conrad Blucher Institute for overseeing the CBI field and laboratory work. We would also like to thank Chandler Christianson, Holly Thomas, Montse Canedo, and for help in the field with this project.

Suggested Citation:
INTRODUCTION

This project’s focus is monitoring the hydrological effects sourced from the Rincon Bayou Pipeline (RBP) in the Nueces Delta near Corpus Christi, Texas (Figure 1). This report will highlight trends in salinity changes throughout pumping events from 2009 to 2016 and have a more detailed look at the effects seen during the 2015-2016 sampling year (September 1, 2015 to August 31, 2016). The results of this study are used for the continual adaptation of a water management plan that will help water managers make decisions on quantity, timing, and duration of pipeline inflows that are most productive and important to the ecology of the Nueces Delta.

The Nueces Delta has been a scientific research focus due to its hypersaline condition (Matthews and Mueller 1987; Whitledge and Stockwell 1995; Montagna et al. 2002; Palmer et al. 2002; Montagna et al. 2009; Hill et al. 2011; Nueces BBEST 2011; Nueces BBASC 2012; Hodges et al. 2012). Because of watershed impoundments, riverbank modifications, and increased urbanization along the Nueces River, the Nueces Delta is no longer connected to the Nueces River, except through the Nueces River overflow channel that was permanently opened in 2001. Because of these factors, the majority of freshwater flow is diverted from the river directly to the bay, bypassing the delta. The only natural means of freshwater flow through the Nueces Delta is during severe flooding events or local heavy rainfall causing the flow to over bank into the delta (BOR 2000; Pulich et al. 2002; Hill et al. 2011). Decreased inflows into the delta and prolonged Texas droughts have caused frequent hypersaline conditions in the Nueces Delta. Freshwater inundation within the Nueces Delta over the past 30 years has been insufficient in volume and distribution to maintain a healthy marsh, the lack of sediment loading in the system is leading to the delta front eroding into Nueces Bay, the marsh plants are under stress, and the connectivity of aquatic habitat is threatened (Hodges et al. 2012).

In 1990, studies of this hypersaline environment found to pose harm to ecological and biological processes and overall health degradation of the Nueces Estuary. This impact evoked the state of Texas to develop an inflow criterion for freshwater inflows (Dunton and Alexander 2000; Montagna et al. 2002; Palmer et al. 2002). The resultant 2001 Agreed Order, from the Texas Commission on Environmental Quality (TCEQ), requires the City of Corpus Christi (City) to provide no less than 151,000 acre-feet (186,255,757 m³) per year to the Nueces Estuary (TCEQ 1995). Each month the City is required to “pass through” inflow to the Nueces Estuary equal to the measured instream flow into the Choke Canyon Reservoir/Lake Corpus Christi Reservoir System up to a target amount (TCEQ 1995). The target amount varies by month and is calculated based on the combined storage volume of the Reservoir System. The City may receive credits for excess flow from the previous month or from relief credits based on salinity measured at the SALT03 monitoring station in Nueces Bay (Montagna et al. 2009).
To efficiently deliver freshwater to the Nueces Delta, the City built the Rincon Bayou pump station and pipeline (RBP) to divert up to the first 3,000 acre-feet (3,700,446 m3) of required “pass throughs” to the upper Rincon Bayou in the Nueces Delta. The RBP became operational in November 2007. The RBP pump station includes three 350 horsepower mixed flow submersible pumps capable of moving up to 60,000 gallons per minute with all three pumps operating (Table 1; Figure 2). The number of days to deliver a given volume of freshwater through the RBP depends on the number of pumps used.

Table 1. Capacity of the Rincon Bayou Pipeline.

<table>
<thead>
<tr>
<th>Number of Rincon Bayou Pumps in Operation</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow, gallons/minute</td>
<td>28,000</td>
<td>46,000</td>
<td>60,000</td>
</tr>
<tr>
<td>Flow, cubic feet/second</td>
<td>62</td>
<td>102</td>
<td>134</td>
</tr>
<tr>
<td>Flow, acre-feet/day</td>
<td>124</td>
<td>203</td>
<td>265</td>
</tr>
<tr>
<td>Total kW</td>
<td>230</td>
<td>455</td>
<td>675</td>
</tr>
</tbody>
</table>

This project’s principal objective is to monitor the RBP as it releases freshwater into the Nueces Delta system with monitoring stations to measure the salinity downstream and in adjacent areas to the main channel. The results of this study will be used in the development of a Rincon Bayou Pipeline Management Plan that will help water managers make decisions on quantity, timing, and duration of pipeline inflow events that are most productive and significant to the ecology of...
the Nueces Delta. This report will focus on describing the distribution of RBP freshwater inflows in the Nueces Delta and provide a descriptive analysis for the six RBP pumping events that occurred between September 1st 2015 and August 15th 2016. This project represents the seventh year of monitoring the RBP in the Nueces Estuary.
METHODS

The Coastal Bend Bays & Estuaries Program (CBBEP) contracts this salinity-monitoring project to the Conrad Blucher Institute for Surveying and Science (CBI) at Texas A&M University - Corpus Christi (TAMU-CC). CBI installed and maintains a network of four salinity monitoring stations located downstream in the Nueces Delta and Bay recording data in correspondence with the RBP freshwater releases (Figure 3). Each Nueces Delta (NUDE) station is jetted approximately five feet into the sediment near the water’s edge with a water quality datasonde extending into the deepest parts of the channel, which vary in distance at each location. NUDE2 is located in the middle reach of Rincon Bayou (27.888611°N, 97.569444°W) and NUDE3 is located in the lower tidally influenced reach of Rincon Bayou (27.883774°N, 97.533188°W). SALT08 is located in the lower Rincon Bayou at the confluence of Nueces Bay (27.870428°N, 97.517090°W). Salinity data from SALT08 provides verification RBP freshwater has reached the interface to Nueces Bay. SALT03 (27.851561°N, 97.482028°W) is located in the middle of Nueces Bay and SALT05 (27.891601°N, 97.610684°W) is located in the Nueces River; both stations are used as references in the report to compare bay and river salinity, respectively, to Rincon Bayou. The SALT04 monitoring station was reinstalled in the mitigation channel southeast of South Lake (27.867197°N, -97.549240°W). SALT04 collects baseline salinity data for comparison to a potential flow regime change that may result from future construction of a diversion channel from the Rincon Bayou to the mitigation channel.

A tide gauge (NUEBAY 185) is located in Nueces Bay (27.832149°N, -97.485056°W) and measures primary water level (m), water temperature (°C), wind speed (m/s), wind gusts (m/s),
wind direction (°), and barometric pressure (mbar). A weather station, NUDEWX is located on Rincon Bayou downstream from the RBP outfall (27.897582°N, -97.616524°W). The NUDEWX measures wind speed (m/s), wind direction (°), barometric pressure (mbar), rainfall (mm), relative humidity (%), and solar radiation (cal/cm²/min). The CBI performed monthly maintenance to NUDEWX including a rain gauge calibration check. NUEBAY 185 is serviced annually as per NOAA COOPS standards for water level monitoring stations (http://tidesandcurrents.noaa.gov/).

The CBI salinity monitoring stations involve Hydrolab® MS5 and H20 water quality datasondes interfaced with cellular IP modem (Figure 4). Stations are polled by an automated computer program designed and implemented by the Information Technology staff at CBI. Data is stored in the CBI project webpage that includes a map showing station locations, Quality Assurance Project Plan, Scope of Work, Data Management Documentation, Dataonde Standard Operating Procedures, Quality Assurance Quality Control documents, datasonde calibration records, and graphs of the previous seven days of data collected from each station. Each Hydrolab measures water quality parameters. Hydrolab MS5 datasondes at SALT01, SALT03, & SALT05 measure: water temperature (°C), specific conductance (µS/cm), salinity (PSU), pH, dissolved oxygen (% saturation & mg/L), and depth (m). Hydrolab H20 datasondes at SALT08, NUDE2, and NUDE3 measure: water temperature (°C), specific conductance (µS/cm), salinity (ppt). Instruments are exchanged monthly with calibrated datasondes (Figure 5). Calibration and post-calibration of datasondes are performed at the CBI wet lab with all quality control forms retained in the laboratory record book and stored online in the publically accessible CBI Environmental Database http://lighthouse.tamucc.edu/RinconSalinity.
Figure 4. Dominic Burch uses a radio and computer to call NUDE3 and SALT08 before and after exchanging the datasondes to ensure the devices are measuring salinity accurately.
RESULTS AND DISCUSSION

Thirty-one pumping events have occurred since the RBP became operational in late 2007 (Table 2). No pumping events occurred during the first year (September 2008-August 2009) due to a persistent drought limiting freshwater supply. Three pumping events occurred during year two (2009-2010) totaling 6,017 acre-feet (7,421,860 m3), three pumping events in year three (2010-2011) totaling 2,997 acre-feet (3,696,745 m3), four pumping events in year four (2011-2012) totaling 5,695 acre-feet (7,024,679 m3), four pumping events occurred in year five (2012-2013) totaling 3,991 acre-feet (4,922,626 m3), five pumping occurred in year six (2013-2014) totaling 11,694 acre-feet (14,424,337 m3), and six pumping events occurred during year seven (2014-2015) totaling 14,097 acre-feet (17,388,394 m3) of freshwater delivered to the Rincon Bayou. Seven pumping events have occurred so far in year eight (2015-2016) during which 18,616 acre-feet (22,962,464 m3) were pumped (Figures 6-7).
Table 2. RBP pumping events including pumping dates, duration, and acre-feet pumped. * = ongoing pumping event at time of writing

<table>
<thead>
<tr>
<th>Year</th>
<th>Pumping Event</th>
<th>Dates of Event</th>
<th>Duration (days)</th>
<th>Avg. water level (m above MSL)</th>
<th>Acre-Feet Pumped</th>
<th>Wet/Dry Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>No pumping occurred</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Sep. 28 to Oct. 21, 2009</td>
<td>24</td>
<td>0.14</td>
<td>2,987</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Jan. 6 to Jan. 14, 2010</td>
<td>9</td>
<td>-0.21</td>
<td>742</td>
<td>Wet</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>May 10 to May 31, 2010</td>
<td>21</td>
<td>0.14</td>
<td>2,288</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>Mar. 21 to Mar. 30, 2011</td>
<td>10</td>
<td>0.03</td>
<td>1,001</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>May 3 to May 12, 2011</td>
<td>10</td>
<td>0.08</td>
<td>1,002</td>
<td>Dry</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>Jun. 13 to Jun. 22, 2011</td>
<td>10</td>
<td>0.03</td>
<td>994</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>Nov. 2 to Nov. 22, 2011</td>
<td>21</td>
<td>0.03</td>
<td>2,031</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>Mar. 7 to Mar. 19, 2012</td>
<td>13</td>
<td>0.08</td>
<td>1,310</td>
<td>Dry</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>Jun. 21 to Jul. 13, 2012</td>
<td>23</td>
<td>0.19</td>
<td>2,354</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>Oct. 5 to Oct. 18, 2012</td>
<td>13</td>
<td>0.07</td>
<td>2,017</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>Jun. 1 to Jun. 10, 2013</td>
<td>10</td>
<td>0.16</td>
<td>717</td>
<td>Dry</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td>Jun. 24 to Jul. 2, 2013</td>
<td>9</td>
<td>-0.01</td>
<td>731</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td>Jul. 17 to Jul. 21, 2013</td>
<td>5</td>
<td>0.19</td>
<td>526</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>14</td>
<td>Oct. 21 to Nov. 9, 2013</td>
<td>16</td>
<td>0.24</td>
<td>2,348</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>15</td>
<td>Nov. 22 to Dec. 8, 2013</td>
<td>12</td>
<td>0.04</td>
<td>613</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>16</td>
<td>Feb. 3 to Feb. 15, 2014</td>
<td>13</td>
<td>-0.10</td>
<td>2,466</td>
<td>Dry</td>
</tr>
<tr>
<td>6</td>
<td>17</td>
<td>May 9 to Jun. 3, 2014</td>
<td>24</td>
<td>0.12</td>
<td>2,736</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>18</td>
<td>Jun. 23 to Jul. 15, 2014</td>
<td>23</td>
<td>0.05</td>
<td>3,531</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>19</td>
<td>Oct. 1 to Oct. 6, 2014</td>
<td>6</td>
<td>0.23</td>
<td>319</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>20</td>
<td>Jan. 18 to Jan 27, 2015</td>
<td>10</td>
<td>-0.14</td>
<td>695</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>21</td>
<td>Mar. 10 to Mar. 12, 2015</td>
<td>3</td>
<td>-0.06</td>
<td>210</td>
<td>Wet</td>
</tr>
<tr>
<td>7</td>
<td>22</td>
<td>Mar. 19 to Mar. 25, 2015</td>
<td>7</td>
<td>-0.04</td>
<td>1,535</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>23</td>
<td>Apr. 13 to Apr. 28, 2015</td>
<td>16</td>
<td>0.16</td>
<td>2,455</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>24</td>
<td>May 12 to Jun. 15, 2015</td>
<td>35</td>
<td>0.24</td>
<td>8,883</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>25</td>
<td>Aug. 29 to Sep. 1, 2015</td>
<td>4</td>
<td>0.14</td>
<td>449</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>26</td>
<td>Sep. 21 to Oct. 1, 2015</td>
<td>11</td>
<td>0.26</td>
<td>642</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>27</td>
<td>Oct. 17 to Nov. 10, 2015</td>
<td>25</td>
<td>0.33</td>
<td>3,821</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>28</td>
<td>Jan. 3 to Jan. 28, 2016</td>
<td>26</td>
<td>0.06</td>
<td>2,160</td>
<td>Wet</td>
</tr>
<tr>
<td>8</td>
<td>29</td>
<td>Feb. 18 to Feb. 23, 2016</td>
<td>6</td>
<td>0.05</td>
<td>672</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>30</td>
<td>Mar. 16 to Mar. 23, 2016</td>
<td>8</td>
<td>0.05</td>
<td>794</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>31</td>
<td>May 23 to Jul. 14, 2016</td>
<td>53</td>
<td>0.16</td>
<td>10,078</td>
<td></td>
</tr>
</tbody>
</table>
Figure 6. Rincon Bayou pumping events by year from 2010-2016.
Local rainfall varied spatially between the National Weather Service (National Weather Service 2016) at Corpus Christi International Airport (CRP) at 27°46'22.43"N, 97°30'8.47"W and at NUDEWX at 27°53'50.47"N, 97°36'58.73"W with more rainfall frequently occurring at CRP (Table 3). NUDEWX is approximately 11 miles northwest of CRP and is located directly in the Nueces Delta. Despite the regional difference in rainfall, both locations still recorded similar rainfall trends and were representative of the general meteorological conditions in the Nueces Delta watershed.

Rainfall data varied greatly between years with the first year in 2008-2009 starting in a persistent drought and the following 2009-2010 year being the wettest period on Texas record with 42.9 in (108.87cm) at CRP and 15.6 in (39.62 cm) at NUDEWX. The 2010-2011 and 2011-2012 years had progressively less rainfall on record with 25.3 in (64.26 cm) at CPR and 7.9 in (20.01 cm) at NUDEWX in the 2010-2011 year and 18.68 in (47.45 cm) at CRP during the 2011-2012 year.
The precipitation sensor at NUDEWX was offline for repairs for approximately 3 months during 2011-2012 year and missed several rain events causing the annual rainfall total to be inaccurate. The 2012-2013 year had the least precipitation to date among sampling years with only 14.16 in (35.97 cm) of rainfall recorded at CRP and 7.13 in (18.11 cm) at NUDEWX. The precipitation during the 2013-2014 year was the third wettest year compared to previous sampling years with 18.69 in (47.47 cm) of rainfall at CRP and 19.29 in (49.00 cm) at NUDEWX. The 2014-2015 sampling year was the wettest to date with 48.51 in (123.22 cm) of rainfall at CRP and 29.68 in (75.39 cm) recorded at NUDEWX. The most recent 2015-2016 sampling year was the third wettest year with 30.18 in (cm) of rainfall at CRP and 18.24 in (cm) at NUDEWX. Drought conditions were absent throughout most of Texas during the 2015-2016 sampling season (Figure 8).

Figure 8. Drought condition throughout the state of Texas on July 5, 2016, which was generally representative of drought, conditions throughout the 2015-2016 year.

Capacities at Lake Corpus Christi varied between 15.1\% and 29.9\% with a daily average of 17.5\% throughout the 2012-2013 sampling year, the lowest levels seen in over 16 years (Nueces River Authority 2016). The Choke Canyon reservoir levels varied between 38.6\% and 52.5\% with an average of 45.8\% during the 2012-2013 year (Nueces River Authority 2016). The
following 2013-2014 sampling year were generally greater with Lake Corpus Christi ranging between 23.6% and 100.0% with a daily average of 74.5% and the Choke Canyon Reservoir ranging between 29.3% and 36.8% with a daily average of 33.5% (Nueces River Authority 2016). The 2014-2015 sampling year exhibited the highest reservoir capacities to date with Lake Corpus Christi ranging between 45.7% to 100.0% capacity with a daily average of 63.5% and Choke Canyon Reservoir ranging between 24.0% to 41.3% capacity with a daily average of 28.5%. The high amount of rainfall during the 2015-2016 sampling year resulted in generally high reservoir capacities with Lake Corpus Christi ranging between 63.0% to 89.4% capacity with a daily average of 79.3% and Choke Canyon Reservoir ranging between 32.8% to 38.4% capacity with a daily average of 28.5%.

Salinities recorded at NUDE2 generally drop shortly after a pumping event was initiated and gradually increased after the end of a pumping event (Figure 9). Pumping events 25 and 26 did not seem to have a significant impact on the salinity levels at NUDE2 but were relatively small events with only 449 and 642 acre-feet being pumped, respectively. During pumping event 27, the salinity at NUDE2 slowly fell from approximately 29 PSU to 5 PSU approximately 20 days after initiating the pumps. The salinity at NUDE2 dropped from approximately 10 PSU to 2 PSU approximately 18 days after initiating the pumps during event 28. Pumping event 29 resulted in a decrease in salinity from approximately 25 PSU to 2 PSU at NUDE2 6 days after initiating the pumps. NUDE2 salinity decreased from approximately 10 PSU to 1 PSU 6 days after initiating the pumps during event 30. Pumping event 31 represents the longest duration, 52 days, and the greatest amount of freshwater pumped, 10,078 acre-feet, during one single event to date (Figure 10). During event 31 salinity levels at NUDE2 dropped from approximately 14 PSU to below 5 PSU 11 days after initiating the pumps. Salinity levels remained below 5 PSU throughout the remainder of the pumping event and 11 days after the end of the pumping event.
Figure 9. NUDE02 salinity during the 2015-2016 sampling year. Shaded areas denote the seven pumping event, thickness of each shaded area represents duration (days) of pumping events. The horizontal red line represents 35 PSU which is typical Gulf of Mexico (GOM) salinity.
Figure 10. Individual pumping events during the 2015-2016 year. Vertical lines represent the start (left line) and end (right line) of pumping events. Each graph represents 4 days before the pumping event and 7 days after the pumping event for A) event 25, B) event 26, C) event 27, D) event 28, E) event 29, F) event 30, and G) event 31.

In addition to freshwater inflows, the salinities in the Nueces Delta are also influenced by tidal variations which will cause movements of fresh and saltwater separated by a halocline (Adams and Tunnell 2010). As the tide rises, saltwater nearer to the bay is forced further back into the delta, and as the tide lowers, freshwater located further away from the bay is pulled closer to the bay. This is evident at SALT08, which will undergo rapid increases and decreases in salinity after a pumping event in correlation with rising and lowering tides (Figure 11).

At least some tidal influence on salinity levels at SALT08 appeared to be present during periods of all pumping events during the 2015-2016 sampling year. Diurnal tidal variation appeared to have little to no effect on salinities at NUDE2 and NUDE3 during pumping events. Wind direction, wind velocity, evaporation and rainfall during pumping events have all had an effect on hydrodynamics in the Nueces Delta (Adams and Tunnell 2010).

Pumping events did not seem to have any effect on salinity levels at the new SALT04 monitoring station. This is as expected as the mitigation channel currently has no direct connection to the Rincon Bayou. Salinity values at SALT04 ranged from 9.3 to 21.6 PSU with an average of 16.5 PSU from the installation on July 13th, 2016 to July 31st, 2016. SALT04 will continue to monitor.
salinity values for the potential construction of a diversion channel that will connect the Rincon Bayou to the mitigation channel.

Figure 11. SALT08 salinity (red line) and NUEBAY water level (blue line) during pumping event 31.

CONCLUSIONS

The 2015-2016 sampling year had more total pumped water via the RBP to date with a total of 18,616 acre-feet, 4,519 acre-feet more than the previous sampling year. The majority of the 2015-2016 sampling year pumping volume and number of total pumping days is attributed to pumping event 31 which represented 54.1% of the total pumped water (10,078 of 18,616 total acre-feet) and 39.8% of the total number of days pumped (53 of 133 total pumping days).

Most of the pumping events during the 2015-2016 sampling year were typical with salinities dropping to below 5 PSU shortly after initiating the pumps. Events 25 and 26 were likely the exception due to low pumping volumes combined with relatively high water levels.

A review of all the pumping events since this project began in 2009 appears to indicate that the pipeline is an effective tool for managing salinities within the Rincon Bayou. The combined effects of precipitation, wind direction and velocity, tidal variations and evaporation has a significant effect on salinity levels in the Nueces Delta, and the data gathered from this project will be incorporated into the overall water management strategy for reestablishing the connectivity and salinity gradient back in the Nueces Delta.
REFERENCES

