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Executive Summary 

 

Estuaries, such as coastal bays and lagoons, provide important nursery ground for juvenile fishes 

and shellfish and many are connected to the ocean via inlets. Larval stages of fish 

(Ichthyoplankton) and shellfish species must pass though these inlets that act as a bottleneck for 

the transport of larvae from their oceanic spawning grounds to estuarine nursery habitats. Larval 

fish (Ichthyoplankton) have limited horizontal swimming capabilities against strong currents, 

which often occur in coastal inlets, and thus rely heavily on water currents for transport which 

they can detect using environmental cues and reach by vertically positioning themselves in the 

water column. In recent years, desalination plants have become a sought-after source of drinking 

water in the United States. While increasing access to a much-needed resource, desalination 

plants can have harmful effects on the coastal marine environment. Desalination plant intakes 

kill larvae by impingement and entrainment, and discharge of salt brine alters the salt content in 

the vicinity of the outflow, together with elevated water temperature and elevated concentrations 

of heavy metals and other toxic elements. In the spatially confined setting of a coastal inlet with 

limited space to avoid the impacted zones, the risk that larval fish are negatively affected by 

these multiple, parallel stressors associated with desalination plant may be high.  This study 

investigated ichthyoplankton abundance in the Aransas Pass Inlet system by sampling the Inlet 

and the three different channels that make up the System (Corpus Christi Ship Channel, Aransas 

Pass Channel, Lydia Ann Channel) in different water depths to improve our understanding how 

larvae use the inlet waters as they pass from the Gulf of Mexico to their nursery habitats in the 

Aransas-Corpus Christi Bay System. A total of 17,645 fish were identified to one of 22 families 

and an additional 400 individuals could not be identified to family but were identified as the 
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ordinal level across six months, solidifying the fact that the Port Aransas Inlet is an important 

area for larval ingress with a large diversity of fishes. Larval density was found to statistically 

increase or decrease with some the factors tested, most notable being photoperiod and month. 

Furthermore, family level analysis showed differing correlation between family density and the 

factors tested. Sciaenid (drums) density was highest during the months of October and 

November, while increased sparid (porgies) densities occurred in February. The analysis of  

environmental drivers of ichthyoplankton density provide information for planning purpose that 

will allow better mitigation and reduction of the effects of anthropogenic activities, specifically 

in this case the implementation and construction of a desalination plant located on Harbor Island. 

Through restricting timing and location of discharge and intake flows of the desalination plant 

the negative impacts on the susceptible ichthyoplankton can be reduced.   
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Introduction 

Estuaries, such as coastal bays and lagoons, provide important nursery ground for juvenile fishes 

and shellfish. This essential habitat is structurally complex and provides protection for juvenile 

fish from predators and provide foraging opportunities increasing the chance of survivorship 

(Minello 1999). Inlets are a prominent feature of many coastal waterways that connect the ocean 

to estuaries and are dynamic environments with distinct seasonal changes in environmental 

parameters, such as water temperature, salinity and dissolved oxygen concentration. Larval 

stages of many fish and shellfish species must pass though inlets, which act as a bottleneck for 

the transport of larvae from their oceanic spawning grounds to nursery habitat (Boehlert & 

Mundy 1988, Schieler et al. 2014). Anthropogenic factors such as increased turbidity from 

boating activity and artificial light can disorient larvae and reduce the rate of successful ingress 

into estuaries (Collin & Hart 2015). To better understand spatiotemporal patterns of 

ichthyoplankton ingress it is crucial to understand 1) the composition of ichthyoplankton, 2) their 

spatial distribution in the water column, 3) shifts in composition and distribution over time, and 

4) what environmental factors correspond with shifts in composition. All four components help 

us to understand patterns of larval ingress and thus allowing us to engage in planning to mitigate 

the human impacts.  

In Texas coastal recreational sportfishing accounts for $1.79 billion each year, with most funds 

being attributed to red drum fishing (Southwick 2006). While some species spend their entire life 

history in estuaries, like many species of gobiids, this research will put special focus on 

estuarine-dependent, marine species that use estuaries as nursery grounds during their early life 

stages. These obligate estuarine-dependent marine fishes are species that require an estuary for 

part of their life cycle and can either spawn in the estuary and move offshore as they age or 
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spawn offshore and move into the estuary for their larval stage (Able 2005). Because this 

research focusses on movement of larvae through inlets, the fish species which spawn offshore in 

the Gulf of Mexico (GOM) and move into estuaries for nursery habitat will be the primary focus. 

Since ichthyoplankton have limited horizontal swimming capabilities against strong currents, 

which often occur in coastal inlets, they are thought to rely heavily on environmental cues and 

position in the water column for transport in and out of the protected waters. Major cues that can 

affect ingress include seasonal temperature change, tidal variation, and daylight duration 

(Wiseman Jr. & Dinnel 1988). There are two primary mechanisms of larval transport through 

inlets: one being passive and the other being active transport. 

Passive transport models view planktonic larvae as passive particles which are solely moved by 

physical forces. Some studies use 2 or 3-dimension models in which the larval planktonic 

organisms do not respond to any environmental cues and are akin to passive particles like grains 

of sand or pieces of plastic (Pietrafesa et al. 1988, Seabergh 1988, and Wang 1988). These 

models are heavily driven by three components: wind, tidal fluxes, and physical geography of the 

estuary.  Additionally, inlet and current velocity and overall water flow are the main elements 

being modeled. Tidal flow creates a plume of estuarine water in the marine environment during 

the ebb tide and a plume of ocean water in the estuary during the flood tide. Passive transport 

studies characterize tidal plumes as the major transport mechanism into and out of an estuary 

(Pietrafesa et al. 1988, Seabergh 1988, and Wang 1988). The tidal changes and transport currents 

can also be affected by wind velocity, which is often a key factor in estuaries in the eastern GOM 

(Brown et al. 2005). While modeling larvae as passive particles provides a good basis for 

understanding complex physical transport through costal inlets, it is seen as an incomplete 

representation by many in the scientific community today (Whitefield et al. 2023). 



9 
 

Active transport models view planktonic larvae not as passive particles but as active individuals 

responding to cues in the environment. More recent studies, such as Faillettaz et al (2018), have 

found that including simple swimming behavior in dispersion models increases accuracy as 

compared to passive larval models. Many studies have shown evidence of behavioral responses 

to the environmental cues involved in current fluctuations (Boehlert & Mundy 1988, Baptista et 

al. 2020). Vertical migration is known to occur in planktonic species; with plankton moving up 

in the water column at night and down during the day to avoid predators and/or harsh UV rays, 

or to seek food items. There is some evidence that ichthyoplankton use vertical movement as a 

way of transport through inlets (Schieler et al. 2014, Whitfield et al. 2023, Wenner et al. 2005). 

In their review, Boehlert & Mundy (1988) found that the use of vertical movements to facilitate 

transport through inlets was highly variable among species (Figure 1). Paralichthys spp. in North 

Carolina were found in higher concentration on flood tides during the night as compared to ebb 

tide during the day, leading Weinstein et al. (1980) to speculate that post larval flounder shifted 

to the bottom during ebb tides (Figure 1.) By comparison, Weinstein et al. (1980) found that 

Atlantic croaker, (Micropogonias undulatus), remained deeper in the water column both day and 

night (Figure 1). Boehlert & Mundy (1980) assert clear evidence for behavioral responses to tidal 

forces but what cues these responses is less clear. There is evidence for light level affecting 

water column position of plankton, but there are also other cues such as salinity. In their study, 

Téodosio et al. (2016) present the Sense Acuity and Behavioral (SAAB) hypothesis which states 

that ichthyoplankton use a hierarchy of cues including odor, sound, visual, and geomagnetic. The 

SAAB hypothesis has two components, offshore and nearshore components, and is based on 

studies of post-flexion larvae across multiple temperate species. When larvae are offshore, the 

SAAB hypothesis maintains that they use cues from sensory organs that detect the sun’s intensity 
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and position and earth’s geomagnetic field. Nearshore the larvae will exhibit behaviors in 

response to estuarian cues such as odor, sound, and visual cues. Baptista et al. (2020), found that 

both post and pre-flexion white seabream (Diplodus sargus) larvae can swim at speeds greater 

than most ocean currents, showing that these larvae are not restricted to passive dispersal. 

Salinity cues have been most apparent in shrimp and crab species (Boehlert and Mundy 1980), 

which have been shown to be recruit, transition into juveniles, more successfully in years with 

high rainfall (Boehlert and Mundy 1980). Salinity cues are particularly important for this 

research because as human water usage increases while freshwater stores decrease, desalination 

plants and their effluents will apply more pressure to coastal ecosystems. The salinity will 

increase wherever the briny discharge of a desalination plant is located in the estuary and can be 

further exasperated by slow flushing times and bottom topography. The high levels of salinity 

would not only cause osmotic stress on the organisms but may interfere with inlet transport cues. 

The Aransas Pass Inlet system connects the GOM waters with several bays: Aransas Bay, 

Corpus Christi Bay, Nueces Bay, Redfish Bay, Copano Bay, and St Charles Bay. The nearest 

natural inlets are 35 km north and 125 km south (Pass Cavallo and Mansfield Pass respectively) 

and a much smaller artificial inlet is 29 km south (Packery Channel) of the Aransas Pass Inlet, 

making the Aransas Pass Inlet an important, major point of ingress (and bottle neck) for larval 

fish and shellfish to reach nursery habitat. Even though larval stages are crucial in the life history 

of many marine species, only a few studies have been conducted in the geographic area, with 

knowledge of the vertical distribution of larvae in the water column being scarce. In shallow 

coastal estuaries such as Aransas Bay and Corpus Christi Bay, wind and tidal forcing are the two 

key physical components (Brown et al. 2005). Brown et al.’s (2005) 2-dimensional model 

showed high accuracy for predicting pulses of larval recruitment, with solely physical passive 
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transport data. When models with and without wind forcing were compared, wind forcing could 

at least partially account for increases in particles into Aransas Bay (Brown et al. 2005). 

However, that study simplified the Bay system and lacked the complex bathymetry required. In 

another study, Holt & Holt (2000) found that during the day the concentration of larvae was 

higher in bottom tows, while at night the number of larvae was consistent throughout the water 

column, indicating a relationship between photoperiod and depth. The differing densities of 

ichthyoplankton at varying depths supports the SAAB hypothesis. The conclusion of these 

studies is somewhat limited, however, because they focused on only two species, red drum 

(Sciaenops ocellatus) and spotted seatrout (Cynoscion nebulosus) and were limited to Lydia Ann 

Channel and a period of six weeks of sampling in late summer/early fall (Holt & Holt 2000). A 

more recent and comprehensive study of blue crab larvae (megalops) found the highest amount 

of blue crab megalops in their GOM and Aransas Pass Inlet sampling sites during the months of 

October and February (Weatherall et al. 2018). However, this study was focused on only 

settlement stage larvae gathered with an artificial substrate collector, which only gives insight 

into a small proportion of the population. Information on planktonic larvae of other 

commercially important species in the Aransas Bay area is lacking. However, the importance of 

adjacent bay systems as nursery areas is well known and documented by regular bag seine 

monitoring of fingerling-sized juveniles by the Texas Parks and Wildlife Department Coastal 

Fisheries and a parallel study on newly settled juvenile fish stages sampled with an epibenthic 

sled that documented 30 fish and nine crustacean taxa in the inlet area (Stunz et al. 2022).  

In recent years desalination plants have become a sought-after source of freshwater in coastal 

regions of the United States (Rao et al. 2018). While increasing access to a much-needed 

resource, desalination plants can have harmful effects on the coastal marine environment. 
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Desalination plants intake seawater, through various methods, remove the salt, and discharge a 

briny solution back into the coastal environment. Both the intake and discharge of seawater by 

desalinations plants can be detrimental to marine fauna (Missimer & Maliva 2018, Miri & 

Chouikhi 2005, Petersen et al 2018). Intake systems can cause impingement, entrapment, and 

entrainment of smaller marine organisms, particularly larvae and eggs, and as result kill them. 

The mitigation of velocity and implementation of protective mesh screen coverings for intake 

heads has been shown to reduce the effects of entrapment (Missimer & Maliva 2018, Petersen et 

al. 2018). The discharge of brine effluent is perhaps more harmful, as brine not only increases 

the surrounding salinity, but it can change temperature, elevate heavy metal concentrations, and 

discharge harmful antifouling chemicals (Miri & Chouikhi 2005).A diffuser can be used to dilute 

the brine effluents and prevent accumulation on the seafloor (Missimer et al. 2018), but at the 

same time it creates a larger plume and increases the volume of affected water. Depending on the 

spatial settings and especially in a confined inlet channel, this may lead to a situation where most 

larvae cannot avoid getting in contact with this plume water during their passage. An increase in 

temperature and salinity is associated with lower oxygen solubility in water, increased 

physiological stress on fishes, and increased turbidity of seawater (Miri & Chouikhi 2005). 

Abrupt changes in salinity have been known to affect species growth differently, with an 

increase in salinity slowing growth rate in Micropogonias undulatus (Peterson et al. 1999) and 

increasing growth rate in Paralichthys lethostigma (Moustakas et al. 2004). Although, a study by 

Specker et al. (1999), also tested P. lethostigma growth and survivorship at different salinities 

and found that at 38 ppt P. lethostigma may result in slowed growth rates while lower salinities 

(8 ppt and 14 ppt) showed no adverse effects. Turbidity can perhaps create both positive and 

negative conditions for ichthyoplankton; increasing the ability to hide from predation (Fisken et 
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al. 2002, Carreon‐Martinez et al., 2014) but decreasing their ability to detect prey (Salonen et al., 

2009). Anti-fouling chemicals increase toxicity and are known to impact fish embryo 

development (Petersen et al. 2018) and cause increased physiological stress. These factors can 

not only harm the individual larva, but they can also be detrimental to their food sources, 

reducing the number of zooplankton and thus reducing their chances of feeding success. The 

growth-survival paradigm, first introduced by Anderson (1988), suggests that slower growing 

individuals have a reduced chance of survival as they remain in the larval stage longer and are 

thus more susceptible to starvation and predation (Pepin et al. 2014).  

There are several proposed desalination plants in the coastal Texas area, including a proposed 

desalination plant on Harbor Island, Port Aransas TX with both an inflow and an outflow 

diffuser located in the coastal inlet channel near the geographic focus of this study. (Figure 2). 

Unfortunately, few published studies have assessed the potential impacts of these plants on 

subtropical waters as seen in coastal Texas, not to mention with in- and outflow located in a 

coastal inlet or an estuarine bay. 

Therefore, the main objective of this study was to identify patterns of larval transport through the 

Port Aransas Inlet System to better estimate the risk for encountering impacts of the proposed 

desalination plant and other future development projects. As the reproductive seasons differ 

among species, different fish families and species were sampled in the Port Aransas Inlet system 

during the months of June 2021, July 2021, September 2021, October 2021, November 2021, 

and February 2022, and including their vertical position in the water column using a depth 

stratified sampling design. In addition, we sought to investigate factors influencing larval 

transport in the Port Aransas Channel system, as example for an inlet into mixed estuaries, 

including tide, time of day, and time of year. Taken together, this study will provide critical data 
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for risk management assessment as it pertains to the effects of the proposed Harbor Island 

desalination plant on the ichthyofauna of the Aransas-Corpus Christi Bay System. 

Methods 

Field Sampling 
 

Three channels comprise the Aransas Pass Inlet System: Lydia Ann Channel, Aransas Pass 

Channel, and Corpus Christi Shipping Channel. The largest, Corpus Christi Ship Channel, is 

approximately 13.7 meters deep by 121.9 meters wide and acts as the main pathway for large 

cargo and tanker vessels traveling to the Port of Corpus Christi. There are ongoing plans to 

increase Corpus Christi Ship Channel to 16.5 meters deep and 161.5 meters wide (Torres 2020). 

The Aransas Pass Channel is approximately 14.3 meters deep and 40 meters wide, with 

proposals for dredging and extending the channel into the Gulf of Mexico (Brown et al. 2005). 

Lydia Ann Channel is approximately 7.6 meters deep and 250 meters wide at the entrance 

narrowing to 4 meters deep and 40 meters wide near the exit to Aransas Bay (Brown et al. 2005). 

The Corpus Christi Ship Channel, accounts for 60% of the water flow from the Gulf of Mexico 

(Brown et al. 2005) into the Aransas Bay System. The tides in the area are diurnal to mixed 

diurnal-semidiurnal (Brown et al 2005) and are highly wind driven. The bottom of all three 

channels mainly consists of sand and silt, with seagrass beds compromising 11% of the bottom 

of the surrounding bays and the majority of seagrass occurring in Redfish Bay (Brown et al. 

2005).  

To assess ichthyoplanktonic composition/density a sampling site was located in each channel 

(Aransas Pass Inlet, AP1; Corpus Christi Ship Channel, CC1; and Lydia Ann Channel, LA1 on 

Figure 2) with a fourth being located in between the jetties of the Inlet itself (Port Aransas 

Channel; PA1 located on Figure 2). Sampling occurred over the course of several months 
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starting in June of 2021 and ending in February of 2022 to account for seasonal differences in 

spawning activity among fishes.  

Both ingoing and outgoing tides were sampled for a comparative analysis of passive and active 

transport of the plankton. Samples were also collected during daylight and nighttime hours, as 

previous studies have shown the importance of diurnal vertical movement (Holt & Holt 2000). 

Lastly, 2-3 discrete depths were sampled (depending on the average depth of the channel; 3 

depths for CC1 & PA1 and 2 depths for AP1 & LA1) as ichthyoplankton are known to move 

horizontally in the water column depending on photoperiod and tide. The Pythagorean theorem 

was used to calculate the amount of tow line needed for the desired depth of sampling as 

described in the NOAA SEAMAP Operations Manual (2001). An ideal angle of 45 degrees was 

used in the equation along with total depth and desired depth. The tow line was marked in one- 

and five-meter increments and quickly lowered to desired depth using a winch system. The line 

angle was continually measured during the tow to ensure stability around 45 degrees. A total of 

13 sampling days were completed with every combination of site, photoperiod, tidal phase, and 

depth strata occurring, with exceptions due to poor weather conditions or high levels of marine 

traffic.  

Each sample was collected using a ring net (75 cm diameter, 500 μm mesh width, 5:1 diameter 

length ratio) equipped with a mechanical flow meter (General Oceanics). The initial tow 

occurred just below the surface, the second mid water column, and the final tow just above the 

seafloor (all depending on total depth of the station). The net was towed for 3-10 minutes, 

depending on time of day (photoperiod), at 1-2 knots for a goal of 100 m3 of water volume 

sampled per net tow. All samples were initially preserved in a 50% ethanol solution, then filtered 

and stored in 100% ethanol within 24 hours of collection. For processing in the lab, plankton 
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samples were split if necessary (total of two subsamples) and subsamples were used to quantify 

larvae. All ichthyoplankton were identified to the family level, with most sciaenids being 

identified to genus and species when possible. Menticirrhus sp. were combined into one group 

due to the difficulty of accurately differentiating among Menticirrhus americanus (southern 

kingfish), M. littoralis (Gulf kingfish), and M. saxaltilis (northern kingfish). For larvae where it 

was hard to identify species and of particular importance, DNA Barcoding was used to verify 

identification. Paralichthyids were identified to genus and species level using DNA barcoding as 

they cannot be reliably identified solely on morphological characteristics. The following species 

were identified in the barcoding of paralichthyids: Paralichthys lethostigma (southern flounder), 

Paralichthys albigutta (Gulf flounder), and Citharichthys spilopterus (bay whiff). All individuals 

classified as unknown were considered in too poor condition to be accurately identified by 

morphological characteristics. Larval density was calculated using the following equation for the 

water volume: 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑤𝑤𝑤𝑤𝐹𝐹𝐹𝐹𝐹𝐹 𝑣𝑣𝑣𝑣𝐹𝐹𝑣𝑣𝑣𝑣𝐹𝐹 = 𝜋𝜋 × 𝐹𝐹2 × (𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐹𝐹−𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑓𝑓𝑓𝑓𝑓𝑓𝐹𝐹𝑓𝑓𝑓𝑓𝐹𝐹)×26873
999,999

   

with r = the radius of the net opening and 26873 = rotor constant for the flowmeter (General 

Oceanics Inc, 2018). 

Environmental variables 
 

During each sampling day and at every station, temperature, salinity, pH, and O2 concentration 

profiles were taken using a multiparameter sonde (YSI exo1 or YSI V2). These measurements 

were collected once per photoperiod and tidal change, by slowly lowering the device through the 

water column. A sampling event consisting of samples taken for ingoing and outgoing tide once 
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during night hours and once during day light hours.  NOAA buoy water quality measurements 

were taken for the sampling done in September due to equipment difficulties.   

Ichthyoplankton Community Analysis  
 

Total larval density of each sample was calculated with the following equation: 

𝑇𝑇𝑣𝑣𝐹𝐹𝑤𝑤𝐹𝐹 𝐹𝐹𝑤𝑤𝐹𝐹𝑣𝑣𝑤𝑤𝐹𝐹 𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝐹𝐹𝐹𝐹𝑑𝑑 (𝑓𝑓𝐹𝐹𝑑𝑑ℎ 𝑝𝑝𝐹𝐹𝐹𝐹 100𝑣𝑣3) =
𝑓𝑓𝐹𝐹𝑑𝑑ℎ 𝑐𝑐𝑣𝑣𝑣𝑣𝑑𝑑𝐹𝐹

𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑤𝑤𝑤𝑤𝐹𝐹𝐹𝐹𝐹𝐹 𝑣𝑣𝑣𝑣𝐹𝐹𝑣𝑣𝑣𝑣𝐹𝐹
× 100 

All analysis was completed in R and R Studio using the gls (generalized least squares) function 

in the package nlme (V4.1.1; Hankin 2006, Pinheiro et al. 2021, R Core Team 2021, RStudio 

Team 2020). A full model with 2-way interactions included was used to compare total larval 

density for each sample with time of day, tide, net depth, and month. The factor, season, was 

removed as it repeated the factor of month, and 3-way interactions were not included as they are 

extremely complex and would result in little interpretable results. The sampling completed in 

June and July was removed from this analysis as outgoing tide was not sampled during those 

dates. An analysis of the distribution of larval density across all samples showed that the 

residuals were non-normally distributed with a biological wall at 0 fish/100m3 and a long upper 

tail, to account for this total larval density was then log transformed. GLS analysis was chosen as 

it is best suited for a continuous variable and can be used to compare the interactions between 

factors.  

Family-level Analyses  
 

Family level diversity analysis was completed with the same methods as the analysis for the total 

larval density. The families Sciaenidae and Paralichthyidae were chosen based on their economic 

importance and their spawning migratory behavior. Only Fall, the peak spawning season, was 
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analyzed for the Sciaenidae to reduce the amount of zero values (ties) and to focus on spawning 

time. The residuals of the larval density data for Sciaenidae family were not normal even after 

log transforming the data, so the ANOVA results were verified using a Wilcoxon rank sum exact 

test. 

A Principal component analysis (PCA) was conducted to explore the correlation between the 

ichthyoplankton community (family level) and the environmental variables, tide, depth, 

photoperiod, and month. Analysis was performed in R and R Studio using the prcomp function. 

Scree plot was created using factoextra package (V1.0.7 Kassambara & Mundt 2020). The first, 

second, third, and fourth principal component axes were used to assess community as they 

accounted for a sum of 99.6% of the variation (Figure 12). Four families (Sciaenidae, Gobiidae, 

Clupeidae, and Sparidae) which accounted for the highest correlation to each principal 

component were the focus of the analysis (Figure 13, Figure 14, Figure 15, Figure 16). 

Over 93% of the sciaenid individuals collected were identified as Micropogonias undulatus, 

which left little data for complete analysis of each sciaenid species. Thus, sciaenid species 

density was not individually analyzed and Sciaenidae family analysis was understood to be 

driven by M. undulatus.  

As the majority of paralichthyids identified in the samples are Citharichthys spilopterus (bay 

whiff), which spend their life cycle in bays and estuaries, the paralichthyids were not analyzed 

on a family level. This study’s aim was to explore the differences in larval densities of species 

whose adults migrate offshore to spawn and whose larvae are transported into the bays and 

estuaries for nursery habitat. Furthermore, barcoding resulted in a high level of inaccuracy when 

identifying to species, so the authors did not feel comfortable with further analysis until 

barcoding could be completed for all individuals.  
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Results 

Environmental variables 
 

Across all samples, pH levels were consistent ranging from 7.5 to 8.4 and remained mixed within 

a sample. Both the highest and lowest pH levels were found at station LA1 June had the highest 

salinities measured and the warmest temperatures measured (Figure 3). The coolest temperatures 

were measured in February and the lowest salinities were recorded in October (Figure 3).  

During summer, water quality data was collected in June only, not July, as the sampling for June 

and July was considered one sampling session. The average temperature in June ranged from 25 

to 30 °C. Stations AP1NI and CC1NI both showed stratification between warmer surface waters 

and cooler waters as depth increased. Salinity ranged from 28 to 38 and was the highest salinity 

measured for all months.  Similarly, to the temperature measurements, stations AP1NI and 

CC1NI showed stratification with lower salinity measurements at the surface and increasing 

salinity with depth. Dissolved oxygen (DO) concentrations were consistent throughout the water 

column for stations PA1DI and PA1NI, approximately 5.5 mg/L and 4 mg/L respectively. 

Stations AP1NI and CC1NI showed stratification with higher DO concentrations at the surface, 

5-6 mg/L, and decreasing concentration with an increase in depth (Figure 4).  

In October, the average temperature ranged from 25 to 28 °C varying by station, with complete 

mixing of the water column an example can be seen in Figure 3 C. Figure 3 D, display the 

average salinity for the month of October, but there are a few exceptions in which the surface 

waters display a slight stratification from the rest of the water column. The stations with semi 

stratified salinities have a surface layer of water with lower salinities, of on average 22, and an 

increasing salinity measurement with depth. The stations with semi stratified waters include 

PA1DO, LA1NO, LA1NI, LA1DO, CC1NI, CC1DO, CCDI, and AP1NI (Figures 3 D). 
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Dissolved oxygen concentrations for the month of October ranged from 6 to 8 mg/L throughout 

the water columns for all stations (Figure 4). 

November water temperatures ranged from 22 to 24 °C (Figure 3 E) and showed consistent 

mixing across all stations. Most stations in November showed consistent salinities as well with 

an approximate salinity 34, (Figure 3 F). Salinity was stratified in only one station, LA1, for 

three of the samples, LA1DI (slack), LA1DO, and LA1NI, this month seen in Figure 3 F. 

Dissolved oxygen concentrations ranged from 6.5 to 7.7 mg/L for all stations and remained 

mixed within stations (Figure 4).  

During February water temperatures ranged from 11 to 13 °C with complete vertical mixing for 

all stations (Figure 3 G). Salinity for most stations was vertically mixed ranging from 31 to 32 

(Figure 3 H). Salinity was semi stratified for stations LA1DI, AP1DI, PADI, and PA1NI, seen in 

Figure 3 H. Dissolved oxygen concentrations for February ranged from 9 to 10 mg/L for all 

stations and were mixed within stations (Figure 4).  

For September water quality data was collected from a NOAA buoy station due to an error in 

data collection. Corpus Christi Channel at the approximate location of CC1 water temperature 

ranged 30 to 31 °C at the surface waters, Figure 5. This buoy is located on the southern edge of 

the channel unlike CC1 which was center of the channel and only has data from the surface 

waters, not a complete profile.  Salinity, pH, and oxygen concentration data for this month were 

unavailable.   

 

Ichthyoplankton Community Analysis  
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A total of 150 net tows were completed over the course of 11 days and across six months: June, 

July, September, October, November, and February in 2021/2022. 18,076 ichthyoplankton were 

collected, and total larval densities ranged from 0 to 1141.76 Ind./100m3 in individual net hauls.  

A total of 17,645 fish were identified to one of 22 families and an additional 400 individuals 

could not be identified to family but were identified as the ordinal level (Tables 1-4). Thirty-one 

individual larvae were not identified due to poor condition. Numerically dominant families for 

every sampling month included the Sciaenidae, Clupeidae, and Gobiidae. The most abundant 

families differed based on factors, month, time of day, tidal cycle, and net depth. In the month of 

September, engraulids (5.91 fish/100m2) were abundant and had similar concentrations as 

clupeids (6.74 fish/100m2) (Table 1). Sciaenids were most abundant in October and November, 

with concentrations up to five times greater than the concentrations of other families (Table 1). 

February saw a decrease in the concentration of sciaenids with the sparids and clupeids being the 

most abundant (Table 1). During the day sparids and clupeids were the most abundant families, 

while during the night sciaenids and gobiids were the most abundant (Table 2).  Sciaenids, 

gobiids, and clupeids were consistently abundant across both tidal cycles, while sparids were 

noticeably more abundant during the outgoing tide (Table 3). Sparids were also more abundant at 

non-surface depths than surface depths (Table 4).  

The majority of sciaenids were identified to species level with seven species total identified: 

Cynoscion arenarius (sand seatrout), Cynoscion nebulosus (spotted seatrout), Cynoscion nothus 

(silver seatrout), Larimus fasciatus (banded drum), Menticirrhus americanus (southern kingfish), 

Micropogonias undulatus (Atlantic croaker), Sciaenops ocellatus (red drum) (Table 5-8).  For 

the months of October and November M. undulatus had the largest larval densities (Table 5). 

The densities for M. undulatus were approximately ten times greater than the densities for the 
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next most abundant species, S. ocellatus in October and over two hundred times larger than 

Menticirrhus spp. in November (Table 5). M. undulatus had higher densities during night, non-

surface depth, and ingoing tides (Tables 6-8). Although they did not display a large difference in 

density based on net depth, S. ocellatus had larger densities during night hours and outgoing 

tides (Tables 6-8).  

Out of 19 individuals barcoded, 12 were correctly identified to species, seen below in Table 9. 

As only 63% were correctly speciated using morphological characteristics further analysis was 

not completed. Although future barcoding may be completed on all individuals identified as 

Paralichthys for a later analysis.  

The initial model compared total larval density against the four factors tidal cycle, time of day, 

depth, and month; and resulted in time of day having the highest f-value (35.2) indicating the 

largest group separation. (Table 10). The model was then split into day only and night only to 

better understand fine scale patterns within each group. The distribution of the total larval 

density for each month sampled is significantly larger at night than during the day (Figure 6). 

The variation between day night is most apparent in fall months and less apparent in February 

(Figure 6).  

The day-only model resulted in a significant interaction between month and tide thus the day 

model was split into a one-way model of tide by month (Table 11). Only the months of 

September (p < 0.01) and February (p < 0.05) had significant differences between tides (Table 

12). In September ingoing tide had significantly higher densities than outgoing tide, while in 

February outgoing tide had significantly higher densities (Figure 7).  
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The night-only model resulted in a significant interaction between month and depth stratum, thus 

the day model was split into a one-way model of depth stratum by month (Table 13). Tide was 

not included in the night model because of non-significance, which may be due to insufficient 

sample size. During the months of September, October, and November the non-surface samples 

had significantly higher densities than the surface samples while in February the surface samples 

had significantly higher densities (Figure 9). Month and depth stratum had a significant 

interaction (p < 0.005; Table 14; Figure 8).  

 

Family-level Analyses 
 

The sciaenid model showed a significance relationship in larval density with factors time of day 

and the interaction between time of day and depth (Table 15). The Sciaenidae model was then 

broken down into a day-time model and night-time model as that factor had the largest f-value 

(75.772) and thus indicating the most group separation. There was a significant difference (p< 

0.05) in larval density due to the interaction between time of day and depth.  As seen in Tables 5 

– 8, the majority of identified sciaenids were M. undulatus (Atlantic croaker) indicating that the 

results of the sciaenid analysis are driven by M. undulatus, with higher larval densities occurring 

at night and non-surface depths (Figure 9). 

The day model showed a significant difference in larval density based on depth, with higher 

larval densities occurring at non-surface depths (mid and bottom tows) (Table 16). This 

difference was consistent across both ingoing and outgoing tides but is more apparent during the 

outgoing tide (Figure 10). There was no significant interaction between tide and depth. 
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The night-only Sciaenidae model shows a significant difference (α < 0.05, Table 17) in larval 

density based on the interaction between tide and depth, with higher densities occurring at non-

surface depths for both tidal cycles but only significantly higher densities occurring during 

outgoing tide for non-surface depths (Figure 11).  

An increase in sciaenid density is positively correlated with the months October and November, 

while an increase in clupeid density is positively correlated with the month October and an 

increase in sparid density with February (Figure 17, Figure 18). Gobiid density has a possible 

positive correlation with September, but the correlation is not as apparent as with the other 

families (Figure 17, Figure 18). There is little correlation between tidal cycle and family 

densities, although there is an increase in sparid density associated with outgoing tide (Figure 19, 

Figure 20). All four families (Sciaenidae, Clupeidae, Gobiidae, and Sparidae) have a positive 

correlation between family density and night (Figure 21, Figure 22). Sciaenid, Clupeid, and 

Gobiid densities are positively correlated with non-surface depths, while Sparid density is 

positively correlated with surface depths (Figure 23, Figure 24).  

 

Discussion 

Ichthyoplankton Transportation 
 

This study focused on transportation of larvae which spawn offshore and migrate inshore for 

nursery habitat, primarily sciaenids and paralichthyids (southern flounder). While several 

individuals were identified as P. lethostigma, unfortunately the number was not large enough to 

do a robust statistical analysis (ANOVA) as was the case with the sciaenids. Targeting the 

spawning timeframe of P. lethostigma would make a more ideal data set for analysis. With these 

factors in mind, the interpretation of the results will focus primarily on the months (October and 
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November) and during night hours, in which sciaenids were found to be the most abundant 

family. Analysis of total larval density indicated higher densities at night and during the months 

of October and November. During the day density varied based on the interaction of month and 

tide, while during the night density varied based on the interaction between month and depth. 

The total larval density during the months of October and November was driven by the sciaenids 

with significantly higher densities of sciaenids occurring at night and lower in the water column 

(non-surface depths).  

Significantly lower larval fish densities during daylight hours were also found in a prior 

at Packery Channel, Corpus Christi (Bromschwig, 2019) and may indicate a predator avoidance 

strategy and/or avoidance of damaging UV rays. Both theories are commonly referred to when 

discussing diel vertical migration (DVM; Lampert 1989, Hays 2003). Although, this study found 

significantly higher total larval densities at night occurred in non-surface waters (September, 

October, and November) and no significant differences in total larval density through depth 

during the day, which does not align with DVM. However, with the smaller numbers of 

individuals collected in the day, the ability to establish a statistical correlation between factors 

and larval density was limited. In another study, Hernandez et al. (2009) found that high 

turbulence in surface waters, caused by wind forcing, corresponded to ichthyoplankton’s vertical 

movement to deeper waters. Substantial ship traffic is also responsible for increased turbidity, 

creating an artificial upwelling effect which resuspends sediment in the surrounding waters 

(Irvine et al. 1997, Lindholm et al. 2001). Finally dredging is another practice which increases 

the turbidity in the aquatic environment, as substrate is removed to increase depth for ship 

movement (Erftemeijer & Lewis 2006). As wind and ship traffic play an important role in coastal 

waters of Texas, the avoidance of turbulent surface waters could be an explanation for 



26 
 

ichthyoplankton vertical distributions. Turbulent waters are known to correspond to lower 

densities of larval fish, primarily because of reduced feeding success specifically in the coastal 

Texas area (Lunt & Smee 2014). Future research should be done on the effect of turbulent 

surface waters on ichthyoplankton movement, especially in the coastal Texas area.  

Net avoidance and gear restrictions may further account for the low number of 

individuals collected during the day. In a study conducted by Thayer et al. (1983), it was found 

that higher densities of ichthyoplankton collected during the day, were obtained using a high-

speed sampling technique rather than using a standard bongo net. During daylight hours larvae 

may easily be able to visual perceive the net and actively avoid the net due to slow standard 

sampling speeds. However, this theory assumes that (1) the larval fish are adequately developed 

to be able to swim faster than the sampling gear (2) the sampled waters have low turbidity values 

thus improving visual acuity, which was both not the case for this study. 

Water property data (salinity, temperature, oxygen, and pH) indicated a mixed water 

column, for most sampling rounds. This does not support the SAAB Hypothesis in which 

ichthyoplankton use vertical salinity discrepancies to cue transportation and vertical movement. 

Although, there is the possibility that the salt wedge described in the SAAB Hypothesis did 

occur outside of the sampling area and therefore did cue larval transportation. From our results, 

we conclude that larvae are using the entire water column during incoming tides to be 

transported to the inshore nursery grounds, but can also be flushed out again if not settled 

properly with the outgoing tide as our results suggest.  

III. Implications for possible environmental effects of desalination 
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Desalination plants require water intake systems and discharge system both of which result in 

harmful effects to the environment and thus unique management implications. Intake systems are 

placed in the aquatic environment and cause smaller organisms, such as ichthyoplankton, to be 

susceptible to impingement. In 2004, legislation was passed updating the requirements for 

existing facilities, which intake cooling waters, to reduce the mortality of impinged organisms of 

all life stages (USEPA 2004). Previously the industry standard was an intake mesh size of 9.5 

mm which was solely aimed at reducing the impingement of adults and juvenile organisms and 

resulted in 80% or larger mortality rate of impinged ichthyoplankton (USAEPA 2004). These 

regulations are specified for cooling water intake systems which do not include desalination 

plants. As desalination is considered a newer methodology in the United States, many 

regulations are not yet specified to address the unique issues presented by desalination 

technology.  

Desalination plants further require the placement of wastewater discharge systems. The 

wastewater produced is a warm briny solution often released at high velocities in attempts to 

acclimatize the wastewater with the environmental conditions. Ichthyoplankton are sensitive to 

changes in the environment including salinity, temperature, and current velocity as they are not 

yet fully developed and are experiencing a period of high growth rate.   

We showed that larval fish occupy the whole water column in the Aransas Bay System as 

their presence in surface and non-surface tows showed. They were found in higher densities 

during the night, but also occurred during the day. They were present both during in- and 

outcoming tides and in all months sampled. With the known spawning seasonality of estuarine 

fish and shellfish species from the TPWD Coastal Fisheries monitoring program it is safe to 

expect that larvae are found in the inlet system throughout the year. Thus, the likelihood that 
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larval fish would encounter the brine effluent plume if a diffuser system was installed in the inlet 

channel is high. The same concerns apply for the intake system with the effect size dependent on 

the affected water volume.  

Significantly larger densities of ichthyoplankton were found at non-surface depths, 

meaning that a discharge pipe with a diffusor located along the seafloor has the capacity to affect 

the majority of ichthyoplankton, particularly sciaenids. Locating the intake and the discharge out 

of the inlet and further offshore would reduce the possibility of negatively affecting the high 

concentration of ichthyoplankton traveling through inlets. If the discharge pipe is placed within 

an inlet, the restriction of discharge timing and depth could limit the negative effects to the 

ichthyoplankton.  

 

IV. Summary & Conclusions 
 

In coastal communities the revenue from fishing activities is vital to the economy. In coastal 

Texas species of particular economic importance belong to the family Sciaenidae (drums). 

Several sciaenid species such as M. undulatus and S. ocellatus, migrate offshore to spawn, once 

spawning is complete larvae are transported through coastal inlets into estuaries, and are also 

known as estuarian dependent species. The estuaries and bays act as critical nursery habitat 

which support the growth and development of the ichthyoplankton. The precise mechanism for 

larval transportation remains unclear, but from ichthyoplankton studies such as this we can gain 

a better understanding of the relationship between larval density and environmental factors. As 

desalination plants are increasingly proposed as a solution to the worlds growing freshwater 

crisis, so does their possible negative effects on the environment. Our results suggest that 

locating intake and discharge of a desalination plant in the coastal inlet channels would impact 
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larval stages of a diversity of fish species, with a considerable risk of negatively affecting 

recruitment processes. Species impacted would likely include important species for the 

commercial and recreational fishing industries.  
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Figures 

Figure 1 Conceptual model displaying the response of three taxa (Leiostomus xanthurus, 
Micropogonias undulatus, and Paralichthys spp.) of ichthyoplankton to photoperiod and tidal 
flow. Taken from Weinstein et al. 1980.  
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Figure 2: Map of sampling area in coastal Texas displaying sampling sites Corpus Christi 
Channel, Aransas Pass Channel, Lydia Ann Channel, and Port Aransas (CC1, AP1, LA1, & PA1 
respectively). The blue diamond indicates the location of the proposed desalination plant. 
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Figure 3: Depth profiles of temperature (° C) on the left-hand side and salinity (ppt) on the right-
hand side arranged by sampling month. Profiles were taken for stations Corpus Christi (CC1), 
Aransas Pass (AP1), Lydia Ann (LA1), and Port Aransas (PA1) during day (D) and night (N) for 
ingoing (I) and outgoing (O) tides. June represented by A and B, October by C and D, November 
by E and F, and February by G and H.   
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Figure 4: Depth profile of dissolved oxygen (DO) concentrations (mg/L) for sampling stations 
Corpus Christi night in (CCNI), Aransas Pass night in (AP1NI), Port Aransas night in (PA1NI), 
and Port Aransas day in (PA1DOI) taken during June. 
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Figure 5: Data provided by NOAA (buoy station RTAT2) of surface water temperatures in the 
Corpus Christi Channel for the sample date of September 11th, 2022.   
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Figure 6: Median total ichthyoplankton densities (fish/ 100m3) captured during the day (grey) 
and night (purple) for September, October, November, and February.  Ichthyoplankton densities 
were log transformed. The lower and upper boxes correspond to the first and third quartiles, 
while the whiskers extend to no larger than 1.5 times the interquartile range (IQR). The black 
points indicated values that fell out of the IQR (outliers).  
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Figure 7: Median total ichthyoplankton densities (fish/ 100m3) captured during ingoing tide 
(green) and outgoing tide (orange) for samples collected during the day. Ichthyoplankton 
densities were log transformed. The lower and upper boxes correspond to the first and third 
quartiles, while the whiskers extend to no larger than 1.5 times the interquartile range (IQR). The 
black points indicated values that fell out of the IQR (outliers).  
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Figure 8: Median total ichthyoplankton densities (fish/ 100m3) captured at surface depths (red) 
and non-surface depths (blue) for samples collected during the night. Ichthyoplankton densities 
were log transformed. The lower and upper boxes correspond to the first and third quartiles, 
while the whiskers extend to no larger than 1.5 times the interquartile range (IQR). The black 
points indicated values that fell out of the IQR (outliers). 
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Figure 9: Median total sciaenid densities (fish/ 100m3) captured at surface depths (red) and non-
surface (ns) depths (blue). Sciaenid densities were log transformed with data restricted to fall 
months (September, October, and November). The lower and upper boxes correspond to the first 
and third quartiles, while the whiskers extend to no larger than 1.5 times the interquartile range 
(IQR). The black points indicated values that fell out of the IQR (outliers). 
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Figure 10: Median sciaenid densities (fish/ 100m3) captured at surface depths (red) and non-
surface depths (blue) for samples collected during the Day with data restricted to fall months 
(September, October, and November). Sciaenid densities were log transformed. The lower and 
upper boxes correspond to the first and third quartiles, while the whiskers extend to no larger 
than 1.5 times the interquartile range (IQR). The black points indicated values that fell out of the 
IQR (outliers). 
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Figure 11: Median total sciaenid densities (fish/ 100m3) captured at surface depths (red) and 
non-surface depths (blue) for samples collected during the night with data restricted to fall 
months (September, October, and November). Sciaenid densities were log transformed. The 
lower and upper boxes correspond to the first and third quartiles, while the whiskers extend to no 
larger than 1.5 times the interquartile range (IQR). The black points indicated values that fell out 
of the IQR (outliers). 
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Figure 12: Scree plot of PCA of family densities. 83.5% of the variance in the data is explained 
by the first dimension. A total of 99.6% of the variance in the data is explained by the first four 
dimensions. 
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Figure 13: Loadings plot for principal component 1. Sciaenids, gobiids, and clupeids had the 
largest influence of PC1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



47 
 

Figure 14: Loadings plot for principal component 2.  Gobiids, clupeids, and sciaenids had the 
largest influence of PC2. 
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Figure 15: Loadings plot for principal component 3. Clupeids, sparids, and gobiids had the 
largest influence of PC3. 
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Figure 16: Loadings plot for principal component 4. Sparids, clupeids, and gobiids had the 
largest influence of PC4. 
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Figure 17: PCA biplot for PC1 and PC2. Points are colored by month (September, October, 
November, and February) and loading vectors indicate an increase in family density. Families 
displayed correspond to the families that contributed the most to PC1 and PC2.   
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Figure 18: PCA biplot for PC3 and PC4. Points are colored by month (September, October, 
November, and February) and loading vectors indicate an increase in family density. Families 
displayed correspond to the families that contributed the most to PC3 and PC4. 
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Figure 19: PCA biplot for PC1 and PC2. Points are colored by tidal cycle (ingoing and 
outgoing) and loading vectors indicate an increase in family density. Families displayed 
correspond to the families that contributed the most to PC1 and PC2.  
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Figure 20: PCA biplot for PC3 and PC4. Points are colored by tidal cycle (ingoing and 
outgoing) and loading vectors indicate an increase in family density. Families displayed 
correspond to the families that contributed the most to PC3 and PC4.  
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Figure 21: PCA biplot for PC1 and PC2. Points are colored by photoperiod (day and night) and 
loading vectors indicate an increase in family density. Families displayed correspond to the 
families that contributed the most to PC1 and PC2.  
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Figure 22: PCA biplot for PC3 and PC4. Points are colored by photoperiod (day and night) and 
loading vectors indicate an increase in family density. Families displayed correspond to the 
families that contributed the most to PC3 and PC4.  
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Figure 23: PCA biplot for PC1 and PC2. Points are colored by depth stratum (surface and non-
surface) and loading vectors indicate an increase in family density. Families displayed 
correspond to the families that contributed the most to PC1 and PC2.  
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Figure 24: PCA biplot for PC3 and PC4. Points are colored by depth stratum (surface and non-
surface) and loading vectors indicate an increase in family density. Families displayed 
correspond to the families that contributed the most to PC3 and PC4.  
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Tables 

Table 1: Larval density (fish/100m3) of families arranged by sampling month resulting in total 
averaged (mean ± standard deviation). Dash (-) denotes no taxa collected in tow.  
 

 Month Larval Density (fish/100m3) 

  
June & 
July '21 

September 
'21 

October 
'21 

November 
'21 

February 
'22 

Total Averaged 
(mean ± SD) 

  

Family 
      

 
 

Archiridae 0.30 - - - - 0.06 ± 0.37 

Atherinopsidae - - - - 0.07 0.02 ± 0.12 

Blennidae 0.34 0.51 0.32 - - 0.22 ± 0.59 

Carangidae 0.70 0.12 1.80 0.48 - 0.65 ± 1.81 

Clupeidae 3.16 6.74 40.25 11.23 21.38 19.15 ± 33.94 

Clupeiformes 8.36 2.50 4.13 0.83 0.03 2.51 ± 8.73 

Cynoglossidae 0.39 0.25 0.51 0.29 - 0.30 ± 1.23 

Engraulidae 1.97 5.91 2.61 1.52 - 2.05 ± 4.93 

Gerreidae 3.40 0.38 0.06 0.20 - 0.77 ± 5.63 

Gobiidae 10.68 36.35 18.50 10.54 2.67 14.71 ± 45.70 

Hemiramphidae 0.25 0.08 - - - 0.06 ± 0.45 

Lutjanidae 0.05 - - - - 0.01 ± 0.08 

Microdesmidae 0.17 - - - - 0.02 ± 0.19 

Mugilidae - - - - 0.19 0.04 ± 0.43 

Ophichthidae - - - 0.52 1.66 0.51 ± 2.07 

Ophidiidae - - 0.15 0.06 0.07 0.07 ± 0.26 

Paralichthyidae 0.26 0.67 0.91 2.18 4.18 1.85 ± 5.95 

Sciaenidae 2.55 2.00 108.02 98.29 6.99 51.41 ± 138.77 

Sparidae 0.08 - - 0.01 22.64 5.32 ± 29.32 

Stromateidae - - 0.03 0.01 - 0.01 ± 0.08 
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Syngnathidae 0.31 0.17 0.12 0.23 - 0.14 ± 0.45 

Triglidae - - 0.08 - - 0.02 ± 0.15 

Unknown 10.28 0.08 0.05 0.09 0.02 1.10 ± 11.37 

               
 

Total 43.23 55.76 177.54 126.49 59.88 100.99  
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Table 2: Larval density (fish/100m3) of families arranged by sampling time (day or night) 
resulting in total averaged (mean ± standard deviation). Dash (-) denotes no taxa collected in 
tow. 

 
Time of Day Density (fish/100m3) 

 Family Day Night Total Averaged (mean ± SD) 

Archiridae 0.03 0.08 0.06 ± 0.37 

Atherinopsidae - 0.03 0.02 ± 0.12 

Blennidae 0.31 0.13 0.22 ± 0.59 

Carangidae 0.36 0.92 0.65 ± 1.81 

Clupeidae 2.90 33.91 19.15 ± 33.94 

Clupeiformes 0.46 4.37 2.51 ± 8.73 

Cynoglossidae 0.01 0.57 0.30 ± 1.23 

Engraulidae 0.45 3.51 2.05 ± 4.93 

Gerreidae 0.06 1.42 0.77 ± 5.63 

Gobiidae 0.89 27.27 14.71 ± 45.70 

Hemiramphidae 0.10 0.02 0.06 ± 0.45 

Lutjanidae - 0.02 0.01 ± 0.08 

Microdesmidae - 0.03 0.02 ± 0.19 

Mugilidae - 0.08 0.04 ± 0.43 

Ophichthidae 0.23 0.76 0.51 ± 2.07 

Ophidiidae - 0.13 0.07 ± 0.26 

Paralichthyidae 0.40 3.17 1.85 ± 5.95 

Sciaenidae 1.36 96.85 51.41 ± 138.77 

Sparidae 3.41 7.05 5.32 ± 29.32 

Stromateidae 0.01 0.01 0.01 ± 0.08 

Syngnathidae 0.17 0.10 0.14 ± 0.45 

Triglidae - 0.04 0.02 ± 0.15 

Unknown 0.06 2.04 1.10 ± 11.37 

Total 11.20 182.51 
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Table 3: Larval density (fish/100m3) of families arranged by tidal cycle (ingoing or outgoing) 
resulting in total averaged (mean ± standard deviation). Dash (-) denotes no taxa collected in 
tow. 

 
Tide Larval Density (fish/100m3) 

 Family in out Total Averaged (mean ± SD) 

Archiridae 0.10 - 0.06 ± 0.37 

Atherinopsidae 0.01 0.03 0.02 ± 0.12 

Blennidae 0.23 0.21 0.22 ± 0.59 

Carangidae 0.66 0.64 0.65 ± 1.81 

Clupeidae 15.04 25.49 19.15 ± 33.94 

Clupeiformes 2.44 2.63 2.51 ± 8.73 

Cynoglossidae 0.45 0.08 0.30 ± 1.23 

Engraulidae 2.89 0.75 2.05 ± 4.93 

Gerreidae 1.24 0.05 0.77 ± 5.63 

Gobiidae 18.21 9.32 14.71 ± 45.70 

Hemiramphidae 0.10 - 0.06 ± 0.45 

Lutjanidae 0.02 - 0.01 ± 0.08 

Microdesmidae 0.03 - 0.02 ± 0.19 

Mugilidae 0.01 0.09 0.04 ± 0.43 

Ophichthidae 0.22 0.96 0.51 ± 2.07 

Ophidiidae 0.05 0.09 0.07 ± 0.26 

Paralichthyidae 1.36 2.60 1.85 ± 5.95 

Sciaenidae 56.60 43.40 51.41 ± 138.77 

Sparidae 0.93 12.09 5.32 ± 29.32 

Stromateidae 0.01 0.01 0.01 ± 0.08 

Syngnathidae 0.15 0.11 0.14 ± 0.45 

Triglidae 0.03 - 0.02 ± 0.15 

Unknown 1.77 0.05 1.10 ± 11.37 

Total 102.55 98.59 
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Table 4: Larval density (fish/100m3) of families arranged by sampling depth (surface tow or not 
surface tow) resulting in total averaged (mean ± standard deviation). Dash (-) denotes no taxa 
collected in tow. 

 
Net Depth Larval Density (fish/100m3) 

 Family surface not surface Total Averaged (mean ± SD) 

Archiridae 0.07 0.06 0.06 ± 0.37 

Atherinopsidae 0.04 0.01 0.02 ± 0.12 

Blennidae 0.22 0.23 0.22 ± 0.59 

Carangidae 0.59 0.70 0.65 ± 1.81 

Clupeidae 12.72 21.39 19.15 ± 33.94 

Clupeiformes 0.71 3.21 2.51 ± 8.73 

Cynoglossidae 0.02 0.39 0.30 ± 1.23 

Engraulidae 0.52 2.60 2.05 ± 4.93 

Gerreidae 1.35 0.59 0.77 ± 5.63 

Gobiidae 6.15 17.00 14.71 ± 45.70 

Hemiramphidae 0.07 0.06 0.06 ± 0.45 

Lutjanidae - 0.01 0.01 ± 0.08 

Microdesmidae - 0.02 0.02 ± 0.19 

Mugilidae 0.10 0.03 0.04 ± 0.43 

Ophichthidae 0.66 0.46 0.51 ± 2.07 

Ophidiidae 0.02 0.09 0.07 ± 0.26 

Paralichthyidae 1.67 1.96 1.85 ± 5.95 

Sciaenidae 22.93 64.28 51.41 ± 138.77 

Sparidae 10.41 3.66 5.32 ± 29.32 

Stromateidae 0.01 0.01 0.01 ± 0.08 

Syngnathidae 0.08 0.15 0.14 ± 0.45 

Triglidae 0.04 0.02 0.02 ± 0.15 

Unknown 2.21 0.77 1.10 ± 11.37 

Total 60.59 117.69 
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Table 5: Sciaenid species density (fish/100m3) arranged by sampling month resulting in total 
averaged (mean ± standard deviation). Dash (-) denotes no taxa collected in tow. Data is 
restricted to fall months: September, October, and November.  

 
Month Sciaenid Larval Density (fish/100m3) 

  
September 

'21 
October 

'21 
November 

'21 
Total Averaged (mean ± 

SD) 

sciaenid Spp. 
    

 
 

Menticirrhus spp. 0.14 1.70 0.44 0.76 ± 1.29 

Cynoscion arenarius - 0.31 - 0.12 ± 0.41 

Cynoscion 
nebulosus 0.66 - - 0.15 ± 0.62 

Cynoscion nothus 0.08 0.65 0.02 0.28 ± 0.95 

Cynoscion spp. - 0.15 0.03 0.07 ± 0.42 

Larimus fasciatus - 0.26 0.25 0.20 ± 0.58 

Menticirrhus 
americanus - 0.21 0.08 0.11 ± 0.50 

Micropogonias 
undulatus 0.04 92.74 94.28 71.92 ± 165.22 

Sciaenops ocellatus 0.76 8.73 0.22 3.71 ± 9.55 

Unknown 0.17 3.19 0.07 1.33 ± 7.62 

Total 1.86 107.94 95.40 
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Table 6: Sciaenid species density (fish/100m3) arranged by sampling time (day or night) 
resulting in total averaged (mean ± standard deviation). Dash (-) denotes no taxa collected in 
tow. Data is restricted to fall months: September, October, and November.  
 

 

Fall Time of Day Sciaenid Larval Density 
(fish/100m3) 

  Day Night Total Averaged (mean ± SD) 

sciaenid spp. 
   

 
 

Menticirrhus spp. 0.07 1.61 0.84 ± 1.29 

Cynoscion arenarius - 0.24 0.12 ± 0.41 

Cynoscion nebulosus 0.16 0.14 0.15 ± 0.62 

Cynoscion nothus 0.04 0.51 0.28 ± 0.95 

Cynoscion spp. 0.04 0.10 0.07 ± 0.42 

Larimus fasciatus 0.06 0.32 0.20 ± 0.58 

Menticirrhus americanus - 0.22 0.11 ± 0.50 

Micropogonias undulatus 0.25 139.02 71.92 ± 165.22 

Sciaenops ocellatus 0.09 7.10 3.71 ± 9.55 

Unknown 0.02 2.55 1.33 ± 7.62 

Total 0.73 151.83 
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Table 7: Sciaenid species density (fish/100m3) arranged by sampling depth (surface or not 
surface) resulting in total averaged (mean ± standard deviation). Dash (-) denotes no taxa 
collected in tow. Data presented is restricted to fall months: September, October, and November.  

 

Net Level Sciaenid Larval Density 
(fish/100m3) 

  not surface surface 
Total Averaged (mean ± 

SD) 

sciaenid Spp. 
   

 
 

Menticirrhus spp. 0.53 0.70 0.61 ± 1.29 

Cynoscion arenarius 0.14 0.11 0.12 ± 0.41 

Cynoscion nebulosus 0.24 0.04 0.15 ± 0.62 

Cynoscion nothus 0.35 0.19 0.28 ± 0.95 

Cynoscion spp. 0.10 0.03 0.07 ± 0.42 

Larimus fasciatus 0.27 0.09 0.20 ± 0.58 

Menticirrhus americanus 0.16 0.05 0.11 ± 0.50 

Micropogonias undulatus 104.63 26.30 71.92 ± 165.22 

Sciaenops ocellatus 3.75 3.66 3.71 ± 9.55 

Unknown 1.77 0.72 1.33 ± 7.62 

Total 111.92 31.89 
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Table 8: Sciaenid species density (fish/100m3) arranged by sampling tidal cycle (ingoing or 
outgoing) resulting in total averaged (mean ± standard deviation). Dash (-) denotes no taxa 
collected in tow. Data presented is restricted to the fall months: September, October, and 
November. 
 

 
Fall Tide Sciaenid Larval Density (fish/100m3) 

  in out Total Averaged (mean ± SD) 

sciaenid spp. 
   

 
 

Menticirrhus spp. 0.41 0.98 0.70 ± 1.29 

Cynoscion arenarius 0.15 0.09 0.12 ± 0.41 

Cynoscion nebulosus 0.30 - 0.15 ± 0.62 

Cynoscion nothus 0.48 0.07 0.28 ± 0.95 

Cynoscion spp. 0.02 0.12 0.07 ± 0.42 

Larimus fasciatus 0.29 0.09 0.20 ± 0.58 

Menticirrhus americanus 0.12 0.11 0.11 ± 0.50 

Micropogonias undulatus 100.47 41.43 71.92 ± 165.22 

Sciaenops ocellatus 2.00 5.54 3.71 ± 9.55 

Unknown 0.19 2.55 1.33 ± 7.62 

Total 104.45 50.98 
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Table 9: Morphological identification vs. genetic identification of paralichthyids from February 
sampling.   
 

Vial Morphological ID Genetic ID 
Identified 
Correctly  

R1 Paralichthys lethostigma P. lethostigma Y 

R2 Paralichthys lethostigma P. lethostigma Y 

R3 Paralichthys lethostigma P. albigutta N 

R4 Paralichthys lethostigma 
Citharichthys 
spilopterus N 

R5 Paralichthys lethostigma 
Citharichthys 
spilopterus N 

R6 Paralichthys lethostigma P. lethostigma Y 

R7 Paralichthys lethostigma P. lethostigma Y 

R8 Citharichthys spilopterus P. lethostigma Y 

R9 Paralichthys lethostigma P. albigutta N 

R10 Paralichthys lethostigma P. lethostigma Y 

R11 Paralichthys lethostigma P. lethostigma Y 

R12 Paralichthys lethostigma P. lethostigma Y 

R13 Paralichthys lethostigma P. lethostigma Y 

R14 Paralichthys lethostigma P. lethostigma Y 

R15 Citharichthys spilopterus P. lethostigma N 

R16 Citharichthys spilopterus P. lethostigma N 

R17 Paralichthys lethostigma P. lethostigma Y 

R18 Paralichthys lethostigma 
Citharichthys 
spilopterus N 

R19 Paralichthys lethostigma P. lethostigma Y 
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Table 10: ANOVA model results for total larval density vs the factors month, time of day, depth 
of net, and tidal cycle. Showing degrees of freedom (df), f-value, and p-values.  
 

                            Full Model Total Larval Density  
df f-value p-value 

(Intercept) 1 15.1003 0.000179 
Month 3 4.6931 0.00408 
Time_Day 1 35.2157 3.84E-08 
Depth_Stratum 1 14.1094 0.000283 
Tide 1 11.9995 0.000772 
Month:Time_Day 3 9.2486 1.75E-05 
Month:Depth_Stratum 3 9.8088 9.26E-06 
Month:Tide 3 9.1405 1.99E-05 
Time_Day:Depth_Stratum 1 8.8590 0.003621 
Time_Day:Tide 1 1.0440 0.309246 
Depth_Stratum:Tide 1 0.0486 0.825919 

 
Table 11: ANOVA model results for total larval density collected during the day vs the factors 
month, depth of net, and tidal cycle. Showing degrees of freedom (df), f-value, and p-values. 
 

Day Model: Total Larval Density 
 

D
F 

f-value p-value 

(Intercept) 1 260.207 5.15E-21 
Month 3 4.901 0.00473 
Depth Stratum 1 0.0664 0.7976 
Tide 1 0.0526 0.8195 
Month:Depth 
Stratum 

3 2.591 0.0635 

Month:Tide 3 7.604 0.000294 
Depth Stratum:Tide 1 0.5837 0.4485 
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Table 12: ANOVA model results for total larval density collected during the day grouped by 
month vs the factors of tidal cycle. Showing degrees of freedom (DF), f-value, and p-values. 
 

 Tide-Month Model: Total Larval Density 
 

DF f-value p-value 
September 

   

(Intercept) 1 72.807 1.93E-06 
Tide 1 15.160 0.002135 
October 

   

(Intercept) 1 77.863 4.30E-07 
Tide 1 0.07784 0.7843 
November 

   

(Intercept) 1 75.630 1.58E-06 
Tide 1 1.9407 0.1888 
February 

   

(Intercept) 1 61.853 1.06E-06 
Tide 1 5.1574 0.0383 

 
Table 13: ANOVA model results for total larval density collected during the night vs the factors 
month, depth of net, and tidal cycle. Showing degrees of freedom (DF), f-value, and p-values. 

Night Model: Total Larval Density 
 

DF f-value p-value 
(Intercept) 1 1383.904 1.13E-40 
Month 3 4.2133 0.009401 
Depth Stratum 1 12.665 0.000776 
Month:Depth 
Stratum 

3 12.218 3.09E-06 
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Table 14: ANOVA model results for total larval density collected during the night grouped by 
month vs the factors of net depth. Showing degrees of freedom (DF), f-value, and p-values. 

Month vs Depth Model: Total larval 
Density  
DF f-value p-value 

September 
(Intercept) 1 171.841 4.61E-05 
Depth 
Stratum 

1 4.3199 0.092243 

October 
(Intercept) 1 97.738 4.69E-12 
Depth 
Stratum 

1 1.8018 0.187457 

November 
(Intercept) 1 126.256 2.52E-13 
Depth 
Stratum 

1 0.7472 0.393059 

February 
(Intercept) 1 132.285 6.65E-13 
Depth 
Stratum 

1 1.5710 0.219136 

 
Table 15: ANOVA model results for Sciaenid larval density vs the factors month, time of day, 
depth of net, and tidal cycle. Showing degrees of freedom (DF), f-value, and p-values. 

Full Model: Sciaenidae Larval Density  
DF f-value p-value 

(Intercept) 1 3.05642 0.084116 
Time of Day 1 75.772 2.55E-13 
Depth 1 1.1316 0.290516 
Tide 1 0.01159 0.9145 
Time of Day:Depth 1 4.86152 0.0302 
Time of Day:Tide 1 0.59634 0.4421 
Depth:Tide 1 0.02150 0.8837 

 
Table 16: ANOVA model results for sciaenid larval density collected during the day vs the 
factors depth of net and tidal cycle. Showing degrees of freedom (DF), f-value, and p-values. 

Day Model: Sciaenidae Larval Density  
DF f-value p-value 

(Intercept) 1 16.4154 0.000228 
Depth 1 4.91036 0.03244 
Tide 1 0.07799 0.78146 
Depth:Tide 1 0.10339 0.74947 
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Table 17: ANOVA model results for Sciaenid larval density collected during the night vs the 
factors depth of net and tidal cycle. Showing degrees of freedom (DF), f-value, and p-values. 

Night Model: Sciaenidae Larval Density  
DF f-value p-value 

(Intercept) 1 28.4093 3.62E-06 
Depth 1 6.649254 0.013515 
Tide 1 0.249226 0.620226 
Depth:Tide 1 0.003386 0.953872 
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