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Summary 
 

Baffin Bay has been the subject of intensive water quality studies since 2013, largely in response 

to concerns over persistent algal blooms, fish kills, and hypoxic events. Over the past years, 

multiple water quality parameters, including dissolved oxygen (D.O.), nutrients (total dissolved 

inorganic nitrogen, phosphorous), chlorophyll-a (Chl-a), Secchi depth, organic carbon (both 

dissolved and particulate), and organic nitrogen (both particulate and dissolved) concentrations 

have been measured on a monthly basis by the Estuarine & Coastal Ecosystem Dynamics Lab at 

Texas A&M University - Corpus Christi with field assistance provided by the Baffin Bay 

Volunteer Water Quality Monitoring group. In addition, higher frequency (every 15 minutes, 

continuously) D.O. measurements commenced in early 2015.  

 

Based on historical water quality monthly measurements, we developed a mechanistic dissolved 

oxygen model for Baffin Bay that tied together existing datasets (physical, chemical, and 

meteorological) obtained during the 2013-2016 period in an effort to examine the main drivers of 

D.O. dynamics and hypoxia formation in Baffin Bay. We found that water column D.O. was not 

sensitive to either respiration or photosynthesis within the water column, although bottom water 

was very sensitive to the sediment oxygen consumption because of the shallow water depth (~2 

m). Scenario modeling that included various nutrient input conditions and temperature increases 

projected for the coming century was also conducted. Based on the model predictions, we found 

that warming has limited effect on water column D.O. changes. However, the ongoing 

eutrophication would enhance D.O. decrease, especially in the bottom waters. The outcome of 

this study is that it provides a science-based tool for management agencies and stakeholders for 

hypoxia mitigation purposes. This work revealed that curbing hypoxia highly depends on 

effective means to reduce nutrient loading into Baffin Bay.  
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Introduction 
 

In recent years, hypoxia (dissolved oxygen or D.O. < 2mg L
-1

) was thought to be a possible 

cause for fish kills in Baffin Bay, a subtropical semiarid estuary in northwestern Gulf of Mexico 

(Wetz, 2015). In general, coastal hypoxia is a result of increasing riverine anthropogenic nutrient 

input (Breitburg et al., 2018; Diaz and Rosenberg, 2008; Kemp et al., 2009; Rabalais et al., 2009; 

Turner et al., 2006). Excessive nutrient loading to coastal waters enhances primary production 

and increases organic matter deposition in the sediment, thereby increasing oxygen consumption 

in both water column and surface sediment. Excessive organic matter production fuels aerobic 

respiration in the subsurface waters and sediment. At the same time, freshwater input can also 

increase vertical stratification due to water salt content difference (bottom water being saltier), 

which reduces the transfer of oxygen from surface to subsurface (Murphy et al., 2011; Rabalais 

et al., 2009; Zhang et al., 2017; Zhu et al., 2011). In addition, water column warming may also 

exacerbate hypoxic condition due to reduced oxygen solubility and stronger vertical stratification 

caused by temperature difference as surface water becomes warmer and less dense (Gruber, 2011; 

Keeling et al., 2010). Because of the numerous physical and biogeochemical processes 

involved, a mechanistic model is a useful tool to understand the relative contributions of these 

different processes and elucidate which ones are dominant for hypoxia formation. Currently, 

there is no available model that describes oxygen dynamics in Baffin Bay. Therefore, it is 

imperative to develop such model for future management purposes including designing 

mitigation strategies and adaptation plans.  

 

Baffin Bay has been the subject of intensive water quality studies since 2013, largely in response 

to concerns over persistent algal blooms, fish kills, and hypoxic events. As a part of these studies, 

various water quality parameters, including dissolved oxygen (D.O.), nutrients (total dissolved 

inorganic nitrogen and phosphorous), chlorophyll-a (Chl-a), Secchi depth, organic carbon (both 

dissolved and particulate), and organic nitrogen (both particulate and dissolved) concentrations 

have been measured on a monthly basis using the field assistance provided by the Baffin Bay 

Water Quality Monitoring group. In addition, higher frequency (every 15 minutes, continuously) 

D.O. measurements using Hydrolab multisondes commenced in early 2015 in both surface water 

(~50 cm below water surface) and bottom water (~30 cm above the bottom) at two locations in 

Baffin Bay (Fig. 1).  

 

In this project, a mechanistic dissolved oxygen model was developed based on the water quality 

data, and this model tied together existing datasets (physical, chemical, and meteorological) 

produced during the 2013-2016 period in order to understand the main drivers of D.O. dynamics 

and hypoxia formation. The outcome of this work is that this modeling approach may provide a 

science-based tool for management agencies and stakeholders for hypoxia mitigation purposes 

and developing adaptation plans. 

 

The D.O. model was based upon a previously published study for shallow stratified lakes and 

coastal waters (Stefan and Fang, 1994). We divided the water column in Baffin Bay into two 

layers when there was stratification. We assumed that each layer was horizontally well-mixed. 

The model was parameterized from the aforementioned monthly sample collections, and 

sediment D.O. consumption rates were measured through a previous Sea Grant-funded project 

entitled “Identification of Organic Matter Sources Contributing to Hypoxia Formation in Two 
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Eutrophic South Texas Estuaries: Relationships to Watershed Land use Practices.” The 

produced model output was also used to compare with high-frequency continuous monitoring 

collected using in situ data sonde. 

 

The model outputs generated contributions of different processes that are responsible for D.O. 

production and consumption. We used this information to unravel the dominant mechanisms 

involved in D.O. variability and hypoxia formation. Through scenario modeling (i.e., simulating 

increase in Chl-a levels, long-term water temperature changes), we proposed mitigation 

strategies for reducing the area of hypoxia in the Baffin Bay. 

 

This project generated a high temporal resolution (daily) D.O. modeled dataset for different 

nutrient scenarios and temperature regimes. The data file contains the following columns of data: 

 

 A date/time stamp (local standard time); 

 Parameter value columns;  

 

And the parameters reported include: 

 

 Temperature 

 Time stamp 

 D.O.: dissolved oxygen concentration in mg L
-1
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Methods 
 

A two-dimensional D.O. budget model was developed to evaluate the mechanisms that control 

D.O. production and consumption in Baffin Bay. Two stations, BB3 (97°37.492'W, 27°16.635'N) 

and BB6 (97°29.662'W, 27°15.937'N) (Fig. 1) with monthly monitoring data, available since 

2013, were used in this project.  In this model, Baffin Bay water column with an average depth 

of ~2 m was divided into two layers (surface layer and bottom layer). We considered that each 

layer was horizontally well-mixed. The two-dimensionality assumption for both water 

temperature and D.O. is appropriate in Baffin Bay because horizontal water temperature and D.O. 

variation was much smaller than those in the vertical direction and across time (Stefan and Fang, 

1994).  

 

 
Fig. 1 A map of Baffin Bay and its relative location in the Gulf of Mexico. Water quality data 

used in model development were collected at two locations - BB3 and BB6.  

 

The change of D.O. in each layer is defined in Eq. (1): 

 
   

  
                                                                 (1) 

 

here D.O. is the oxygen concentration in mg L
-1

 as a function of time (t). Other parameters in Eq. 

(1) are described in Table 1. 
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Table 1. A summary of all components in the D.O. budget model 

Symbol Physical meaning Required input parameters Note 

Fs Flux across the air-

water interface 

Calculated from wind 

speed*, water temperature  

and salinity 

Zero for the bottom 

water 

non-zero for the surface 

water 

Fb Air sea flux due to 

bubble injection 

Calculated from wind 

speed*, water temperature  

and salinity 

Zero for the bottom 

water 

non-zero for the surface 

water 

FT Total surface 

reaeration  

Fs + Fb 

P Photosynthetic 

Oxygen production  

Calculated from PAR, Chl-a,  

nutrients, water temperature  
 

R Oxygen 

consumption due to 

water column 

respiration 

Calculated from Chl-a,  

water temperature  

and salinity 
 

SOC Sediment oxygen 

consumption 

Lab measurement
#
  

Do Vertical oxygen 

fluxes  

Water temperature and 

salinity gradients 

 

* Wind speed data were obtained from Naval Air Station Kingsville (automated airport weather 

observations with public access).     

# Monthly data are available from the Carbon Cycle Lab (TAMUCC). 

 

Formulation of the D.O. model 

 

Surface reaeration due to air-sea exchange and bubble injection (Fs+Fb) 

 

Surface reaeration is one of the major D.O. sources. The diffusive exchange at the air-sea 

interface was calculated by multiplying mass transfer coefficient, ks (m s
-1

), with the 

concentration difference between model predicted concentration ([C], mol m
-3

) and equilibrium 

concentration that was determined by Henry's law, [Cs].  

 

                                       (2) 

 

Air-sea bubble injection (Fb) mainly includes two types of processes: the flux from small bubbles 

that totally collapse when they are forced below the air-sea interface (Fc), and that from larger 

bubbles that submerge, exchange gases, and then resurface (Fp).  
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                                   (3) 

 

Fc and Fp were calculated based on a literature method (Emerson and Bushinsky, 2016). 

 

      
             (4) 

                           (5) 

 

In Eqs. 4-5, kc and kp are mass transfer coefficients due to collapsing bubbles and exchange 

across large bubble interface, respectively; X is the atmospheric mole fraction of oxygen, P is 

the fractional increase in pressure experienced by large bubbles and is a function of wind speed. 

 

In this model, the total surface reaeration (FT) is the sum of the surface air-water flux, Fs, and the 

bubble injection induced flux, Fb: 

 

                               (6) 

 

Oxygen production by photosynthesis (P) 

 

Photosynthesis is an important oxygen production process and the rate of photosynthesis depends 

on temperature, solar radiation, and nutrients availability (Eq. 7) (Stefan and Fang, 1994; Tian et 

al., 2015). In this model, we assumed that photosynthesis is a first-order kinetic process. Thus, 

oxygen production is proportional to the Chl-a concentration (mg/L), representing the biomass of 

phytoplankton.  

 

P=Pmax*Chl-a*Min[L]*Min[N,P]        (7) 

 

where Pmax is the maximum specific oxygen production rate by photosynthesis (mg O2 (mg Chl-

a)
-1 

h
-l
), which is temperature dependent at saturating light conditions. Pmax is a function of 

temperature, which can be described using the Arrhenius equation (Eq. 8): 

 

                              (8) 

 

In Eq. 7, Min[L] is the light limitation function and is a function of photosynthetically active 

radiation (PAR), thus it attenuates in the water column as defined in Eq. 9. 

 

Min[L]=                                               (9) 

 

where  and  are the light-photosynthesis slope and light inhibition coefficient, µmax is the 

phytoplankton maximum growth rate, I represents the photosynthetically active radiation (PAR). 

Depth attenuation of I in the water column was calculated as a function of Chl-a concentration.  

The limitation of phytoplankton growth by nitrogen and phosphate is formulated using the 

Michaelis–Menten kinetics: 

 

              
   

      
 

   

      
          (10) 
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where KN and KP are the half-saturation constants for nitrogen and phosphate uptake, 

respectively.  

 

Respiration (R) 

 

Aerobic respiration is the reverse reaction of photosynthesis, in which organic matter is 

transformed into inorganic matter by microbes under the existence of oxygen. We assumed that 

respiration is a first-order kinetic process and related only to the Chl-a concentration and 

temperature (Stefan and Fang, 1994).  

 

        
                  (11) 

 

here kco is the ratio of Chl-a to oxygen utilized in respiration (both in the unit of mg L
-1

), Kr is 

the respiration rate coefficient (day
-1

),  is the temperature adjustment coefficient (Stefan and 

Fang, 1994). 

 

Sediment oxygen consumption (SOC) 

 

Sediment oxygen consumption rates were measured with undisturbed surface sediment cores 

(~20 cm) and the data are available for the 2015-2016 period (Table 1). 

 

Vertical diffusive flux (D.O.) 

 

Tidal inflow and outflow were not considered in this model because of the long water residence 

time in Baffin Bay (>1 yr) (Montagna et al., 2011), although vertical mixing due to the tidal 

movement, surface wave and eddy turbulent diffusion should contribute significantly to D.O. 

exchange between surface and bottom layer. The diffusive flux of oxygen (D.O.) was estimated 

from  

 

                        (12) 

 

In Eq. 12, Kz is the vertical eddy diffusivity and          is D.O. gradient along the pycnocline 

(Justić et al., 1996).  

 

Verification of D.O. model 

The verification process for D.O. model consisted of two separate steps: model calibration and 

model validation. During the calibration step, the input coefficients for all the processes (Fs, Fb, P, 

R, SOC and D.O.) were adjusted to help the model to predict D.O. levels that matched the 

measured D.O. with an acceptable uncertainty (<1.0 mg L
-1

). The desired final calibration was a 

set of input coefficients that guaranteed the model output meeting the acceptable uncertainty. If 

more than one set of coefficients met all criteria, the optimal set of coefficients [Coeffcal] were 

selected based on our professional judgment. For example, all the coefficients should be within 

literature recommended ranges. 

 

It is noted that only a portion of total observed data (i.e., from the year 2015) were used in the 

calibration step. The remaining data were prepared for the validation process. For the validation 
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step, the model prediction based on [Coeffcal] was quantitatively compared with the remaining 

validation data that spanned 2013-2016.   
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Results and Discussion 
 

Model calibration 

Given that temperature, salinity, nutrient, and Chl-a used to construct the model were only 

sampled monthly, daily values were re-calculated by linearly interpolating the nearest two 

sampling periods. Daily meteorological data were downloaded from the Kingsville Naval Air 

Station (http://mesonet.agron.iastate.edu/request/download.phtml?network=TX_ASOS).  

We selected monthly data in 2015 (January-December) as the calibration dataset. The 

coefficients and parameters required by the calibration process were summarized in Table 2. 

Note that sediment D.O. consumption rate was linearly correlated with temperature (Fig. 2). 

Thus, its coefficients were directly derived from in situ measurements without further adjustment. 

During the calibration step, the input coefficients in Table 2 for all the processes (Fs, Fb, P, R, 

and D) were adjusted to help the model to predict D.O. levels, so that the model prediction could 

match the in situ measured D.O. within an acceptable uncertainty (±1.0 mg L
-1

).  

 

Table 2. Values of the fitting parameters used in D.O. budget model 

Symbol Physical meaning Range Units 

ks Mass transfer coefficient  

for surface air-sea exchange 

(0.5~3)×10
-5

 m s
-1

 

kc Mass transfer coefficient for  

exchange due to collapsing bubbles 

(0.1~2)×10
-8

 m s
-1

 

kp Mass transfer coefficient for  

exchange across large bubble 

interface 

(0.1~6)×10
-6

 m s
-1

 

 Light-photosynthesis slope  (0.5-3)×10
-6

 m
2
 s

-1  
W

-1
 

 Light inhibition coefficient  (0.5-6)×10
-8

 m
2
 s

-1  
W

-1
 

µmax Phytoplankton maximum growth 

rate  

(0.5-7)×10
-5

 m s
-1

 

KN Half-saturation constant for 

nitrogen uptake  

0.1-1 mmol N m
-3

 

KP Half-saturation constant for  

phosphorous uptake  

0.01-0.1 mmol P m
-3

 

Kco Ratio of mg Chl-a to  

mg oxygen utilized in respiration 

50-200 - 

Kr Respiration rate coefficient  0.05-0.6 day
-1

 

 Temperature adjustment coefficient 

for respiration 

1.045-1.047 - 

kz Vertical eddy diffusivity  (0.1-2.5)×10
-4

 m
2
 s

-1 
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Fig. 2 Sediment D.O. consumption rate in Baffin Bay (a), and the relationship between sediment 

D.O. consumption and temperature (b). 

 

Generally, the model prediction matched well with the monthly average D.O. within the 

calibration dataset (Fig. 3). The regression coefficients R
2
 for Station BB6 was 0.73, which was 

higher than the value in Station BB3 (R
2
=0.61). However, the averaged residual of model 

prediction was -0.21 mg L
-1

 in Station BB6 and 0.09 mg L
-1

 in Station BB3. One of the reasons 

for both lower residual and R
2
 in Station BB3 was the limited seasonal cycle of D.O. 

concentration at Station BB3. Overall, the small model residual affirmed that the model 

predictions meet the allowable uncertainty criterion (±1.0 mg L
-1

) for calibration processes. Thus, 

we named the coefficients estimation from the calibration model as the “best-fit” reference value.  
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Fig. 3 Comparison between model prediction and monthly measurements based on the 

calibration dataset at both BB6 (a, c) and BB3(b, d).  

 

Sensitivity analysis  

 

Given air-sea exchange, photosynthesis, respiration, vertical diffusion, and sediment oxygen 

consumption all play a role on D.O. budget, the coefficients tested in the sensitivity analysis 

include wind speed, maximum specific oxygen production rate (Pmax), respiration rate coefficient 

(Kr), vertical diffusion rate (Kz), and sediment oxygen consumption rate (SOC). The sensitivity 

analysis was carried out by only changing one coefficient at a time from 75% to 125% of the 

best-fit reference value, while other coefficients were kept the same. 

 

The results of the sensitivity tests  indicate that surface D.O. was not sensitive to the changes 

in respiration rate coefficient Kr (Figs. 4a, 5a for BB6 and BB3, respectively) or photosynthetic 

production rate Pmax (Figs. 4c, 5c for BB6 and BB3, respectively) in both locations, because 

much of the surface oxygen replenishment came from air-sea exchange. However, bottom D.O. 

was very sensitive to vertical mixing (Figs. 4b, 5b) during warm months (July-October) and 

sediment oxygen consumption for the entire year (Figs. 4e, 5e). It is clear that sediment oxygen 

consumption was a very important D.O. sink for the bottom water, as indicated in the sensitivity 

a b

c d
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analysis (Figs. 4e, 5e for BB6 and BB3, respectively). In addition, physical barriers that hindered 

vertical oxygen exchange, i.e., stratification, played a significant role in hypoxia formation in 

both locations (Figs. 4b, 5b for BB6 and BB3, respectively).  

 
Fig. 4. Sensitivity analysis on the parameters and coefficients used in the D.O. model at Station 

BB6. The shaded areas represent the modeled standard deviation derived from changing the 

corresponding coefficients between 75~125% of the “best-fit” reference value. The dotted lines 

represent measured D.O. concentrations. Blue represents bottom water and red represents surface 

water. 

a. Respiration coefficient 75%~125% b. Vertical diffusion coefficient 75%~125%

c. Maximum D.O. production rate 75%~125%
d. Wind speed 75%~125%

e. Sediment D.O. consumption rate 75%~125%
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Fig. 5. Sensitivity analysis on the parameters and coefficients used in the D.O. model at Station 

BB3. The shaded areas represent the modeled standard deviation derived from changing the 

corresponding coefficients between 75~125% of the “best-fit” reference values. The dotted lines 

represent measured D.O. concentrations. Blue represents bottom water and red represents surface 

water. 

 

Model Validation  

 

In the sensitivity analysis based on the 2015 data only, we found that vertical mixing and 

sediment oxygen consumption were important for the D.O. prediction (Figs. 4, 5). Similar to the 

sensitivity tests above, we changed the key coefficients (wind speed, Pmax, Kr, Kz, and SOC) 

from 75% to 125% as the reference value and examined the entire 2013-2016 monthly data.  

The multi-model predictions matched with the observed annual D.O. pattern very well with 

an average of 0.1±1.7 mg L
-1

 (mean ± standard deviation). For example, the model predicted low 

bottom D.O. concentration in warm months, and nearly saturated D.O. concentration in cold 

a. Respiration coefficient 75%~125% b. Vertical diffusion coefficient 75%~125%

c. Maximum D.O. production rate 75%~125% d. Wind speed 75%~125%

e. Sediment D.O. consumption rate 75%~125%
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months at Station BB6. In addition, the model also reproduced low surface water D.O. in 

summer months, which may have resulted from lower oxygen solubility at warm conditions and  

strong mixing between surface and bottom due to the shallow water depth. However, we suspect 

that the D.O. model has a limitation to predict D.O. under special physical conditions (i.e., well 

mixed condition), given the way that the vertical mixing was quantified. We assumed the vertical 

mixing was constant, which could be applied to most cases. However, when there was a strong, 

but short, period of mixing in Station BB6, the two-layer assumption did not hold any more, such 

as around summer 2014, when the model underestimated bottom D.O. at BB6 (Fig. 6a). Our D.O. 

model had a limitation in predicting the homogenous D.O. distribution at BB3 during the same 

period (Fig. 6b). Nevertheless, the low average residual (0.1±1.7 mg L
-1

)
 
affirmed that our model 

does not have bias and can predict the D.O. reasonably well. Note, given that monthly measured 

D.O. data were sufficient enough to do the calibration and validation, quarterly monitored D.O. 

data from TCEQ were thus not necessary for the model development.  

 

a

b
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Fig. 6. Comparison between modeled and measurement D.O. concentration for the monthly 

monitoring dataset. The shaded area is the modeled standard deviation by changing the key 

coefficients by ±25% of the “best-fit” values. 

 

High frequency data 

 

There was good agreement on salinity and temperature data collected from Baffin Bay 

Volunteer Water Quality Monitoring Study and high frequency sonde monitoring (Figs. 7a, b), 

despite the sporadic measurements of the latter. For example, the mean surface salinity and 

temperature differed 1.7 and -0.5 °C in Station BB6 between these two datasets, respectively. 

Temperature has a clear seasonal cycle and ranged from ~10°C in December to ~31°C in August 

from 2015 to 2016.  The seasonal variablity of salinity was remarkable because of the freshwater 

loading during April-May 2015. There was a salinity minimum from June to August 2015, which 

was recorded in both datasets. However, the higher frequency sonde dataset also recorded 

another salinity trough around June 2016, but the monthly sampling missed it.   

 

In contrast to the good agreement between monthly sampling on salinity and temperature, 

the monthly collected D.O. did not match with the sonde data well (Fig. 7c), partitally resulting 

from the large daily varability. The sporadic high frequency D.O. data did not allow us to 

perform a thorough model validation. Nevertheless, the average differences between the D.O. 

model prediction and sonde data were 1.1±1.5 mg L
-1

 and -1.4±2.0 mg L
-1

 in surface and bottom 

layer, respectively. Comparing with the sonde data, the D.O. model overestimated D.O. in the 

surface water, but underestimated it in the bottom water. It is interesting that bottom D.O. 

concentration recorded by the sondes were occasionally higher than surface values, a 

phenomenon that was never recorded in the monthly dataset. One speculation is that this higher 

bottom D.O. could be caused by benthic microalgae (Blanchard and Montagna, 1992) or seagrass 

photosynthesis. However, given that the calibration data for the D.O. model did not have this 

benthic D.O. input term, it was thus difficult to incorporate this high-frequency dataset in the 

modeling for consideration.  

 

Clearly, daily variation in D.O. recorded by the in situ sonde was greater than that from the 

model output, which was based on the linear interpolation of two adjacent monthly samplings. 

One important factor that contributed to this difference is that diel variability was not considered 

in the model. Instead the modeled data can be considered as daily average values. Nevertheless, 

the good agreement between the monthly monitoring data and the model prediction, based on a 

single year record, suggests that the developed model is suitable for examining D.O. dynamics.  

Although, the model’s predictive power may be enhanced when more high frequency data 

become available.  

 

 

 



 

 
 

Fig. 7. Temperature, salinity and D.O. from both monthly and high frequency monitoring at Station BB6. Note, circles represent 

monthly measurements by the Baffin Bay Volunteer Water Quality Monitoring program; the red and blue lines are the daily average 

of surface and bottom within higher frequence sonde dataset; the cyan and black lines with the shaded area are D.O. model predictions 

in surface and bottom waters, respectively.  

 

a

b

c



 

Future Scenarios  

Using the D.O. model developed in this study, we predicted how D.O. in Baffin Bay would 

evolve under the ongoing warming and eutrophication conditions. We examined several 

scenarios by simulating the long-term water temperature changes (temperature +1°C), Chl-a 

concentration increased by 1.5 and 2 times from the present level. We elected to change one 

parameter at a time and kept other parameters the same. We assumed that the entire water 

column would warm up under the warming conditions, thus the thermocline itself would not 

change. Therefore, the warming would only change respiration, photosynthesis, and sediment 

oxygen consumption.  

A  previous study reported that Chl-a in Baffin Bay significantly increased from 1970s to 

2010s (0.3 to 1.8 µg L
-1 

yr
-1

), especially after 1990s when the brown tide blooms were first 

reported (Wetz et al., 2017).  Without reducing nutrient loading, bay water Chl-a concentration 

will likely continue to increase accompanying the exceptionally high organic carbon and organic 

nitrogen concentrations. The annual average Chl-a was 17 µg L
-1

 in Baffin Bay from 2013 to 

2016. Based on the rate of increase, it would take about 5 to 28 years to increase the Chl-a 

concentration by 1.5 times the present level. The long residence time (>1 year) will make Baffin 

Bay even more sensitive to the nutrient loading from the surrounding watershed. Corresponding 

to the ongoing eutrophication in the water column, sediment oxygen consumption rate will also 

increase because more organic carbon would sink and accumulate in the surface sediment. For 

example, a previous study has reported that there is a positive relationship between sediment 

oxygen consumption rate and organic matter input from the primary production and 

allochthonous inputs from outside the system (e.g. riverine input of organic matter) (Hopkinson 

and Smith, 2005). Here we assumed that the sediment oxygen consumption was linearly related 

to the Chl-a concentration in the water column for the nutrient loading analysis. 

 

 
Fig. 8. The D.O. change under different scenarios at both Station BB3 and BB6. 

 

Because D.O. was not sensitive to either respiration rate or maximum specific 

photosynthesis rate (Fig. 8), its concentration would only slightly decrease under the warming 

a b

c d
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condition, mostly a result of decreased oxygen solubility. Although the sediment oxygen 

consumption was also related to temperature, the dependence was weak based on in situ 

incubations (Fig. 2). Therefore, warming itself would not decrease bottom D.O. significantly. In 

comparison, bottom D.O. is sensitive to the Chl-a change because the high Chl-a concentration 

corresponds to strong water and sediment oxygen consumption. This projection shows that both 

water column and bottom D.O. would continue to decrease with increasing eutrophication. At 

BB6 under the doubling of Chl-a scenario, even surface water could approach hypoxia (Fig. 8a) 

and bottom water would reach much more severe hypoxia (Fig. 8c&d).  Thus, nutrient loading 

reduction should have the highest priority in managing the low D.O. conditions in Baffin Bay in 

the future warming climate.  
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Conclusions 
 

In this project, we developed a mechanistic dissolved oxygen model for Baffin Bay using 

existing datasets (physical, chemical, and meteorological). Model construction utilized monthly 

monitoring water quality data from 2015 in the calibration step. Then the model validation step 

utilized remaining dataset from 2013-2016.  

 

Overall, model prediction generated D.O. concentrations to be within 0.1±1.7 mg L
-1

 of the 

measured values. The modeling exercise suggested that water column D.O. was not sensitive to 

either respiration or photosynthesis. D.O. in the surface layer was dominated by air-sea 

exchange, vertical mixing, while the bottom water D.O. was sensitive to the sediment oxygen 

consumption. 

 

Future warming only has limitation impact on the D.O. levels. However, eutrophication would 

play an important role in low D.O. formation in the water column. Therefore, curbing nutrient 

loading should remain a priority in mitigating hypoxia in Baffin Bay. 
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