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The State of Texas Wetlands:  
A Review of Current and Future Challenges

Abstract: With roughly 3.9 million acres of wetlands, 2.3% of its total land area, Texas has the fifth largest wetland acreage in 
the United States. As of 1990, there was an estimated 52% reduction in the state’s original wetland acreage, but there has been 
no recent assessment of statewide wetland loss or gain since then. Wetlands provide critical ecosystem services, including wildlife 
habitat, flood storage and control, aquifer recharge, water quality improvement, pollutant breakdown, and storage of greenhouse 
gases, as well as human recreational opportunities including boating, paddling, fishing, hunting, birdwatching, hiking, and 
nature photography. However, Texas wetlands face intensifying challenges in the coming decades. Forward-facing regulatory and 
legislative actions that anticipate effects of climate change, sea level rise, and urban expansion will likely aid in addressing ongoing 
and complex challenges. Incorporating new technologies will allow for more timely and cost-efficient large-scale monitoring of 
wetland loss and gain. The residents of Texas are largely in support of active management of the state’s water resources, and we 
envision that the success of conservation initiatives will be strengthened when academic institutions, state and federal agencies, 
and conservation-minded private entities work together to ensure the wetlands of Texas persist for wildlife and generations to 
come. 
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Terms used in paper

Acronym/Initialism Descriptive Name
C carbon
CBBEP Coastal Bend Bays and Estuaries 

Program
CH4 methane
cm centimeters
CMP Texas Coastal Management Program
CO2 carbon dioxide
CO2e carbon dioxide equivalent
CWA Clean Water Act
CZMA Coastal Zone Management Act
DDT dichlorodiphenyltrichloroethane
E. coli Escherichia coli
ESLR eustatic sea level rise
EPA U.S. Environmental Protection Agency
EWRA Emergency Wetlands Resources Act
GAOA Great American Outdoors Act
GCJV Gulf Coast Joint Venture
GHG greenhouse gas
GSLR global sea level rise
in inches
LMVJV Lower Mississippi Valley Joint Venture
LWCF Land and Water Conservation Fund
mm millimeters
MSCI Midcontinent Shorebird Conservation 

Initiative
N nitrogen
N2O nitrous oxide
NAWMP North American Waterfowl Management 

Plan

Acronym/Initialism Descriptive Name
NEXRAD Next Generation Weather Radar system
NH3 ammonia
NO3

–-N nitrate
NOAA National Oceanic and Atmospheric 

Administration 
NRCS Natural Resources Conservation Service
NWI National Wetlands Inventory
NWMAP National Wetlands Mitigation Action 

Plan
NWPCP National Wetlands Priority Conservation 

Plan
O2 molecular oxygen
PET potential evapotranspiration
RCP85 Representative Concentration Pathway 

scenario 8.5
RSLR relative sea level rise
S sulfur
SCOTUS Supreme Court of the United States
SSP5 Shared Socioeconomic Pathways
SWCP State Wetlands Conservation Plan
TORP Texas Outdoor Recreation Plan
TPWD Texas Parks and Wildlife Department
TRWD Tarrant Regional Water District
TWDB Texas Water Development Board
USACE U.S. Army Corps of Engineers 
USDA U.S. Department of Agriculture
USFWS U.S. Fish and Wildlife Service
WOTUS Waters of the United States
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INTRODUCTION

With roughly 3.9 million acres of wetlands, 2.3% of its total 
land area, Texas has the fifth largest wetland acreage in the 
United States. Only Alaska (174 million), Florida (11.4 mil-
lion) Minnesota (10.6 million), and Louisiana (7.8 million) 
have more total wetland acres. Large-scale assessments (e.g., 
National Wetlands Inventory [NWI], National Land Cover 
Database) that aim to map and monitor changes in wetland 
extent and distribution are landscape- and continental-fo-
cused and fail to capture finer (state- or regional-scale) chang-
es (Dewitz, 2021; U.S. Fish and Wildlife Service [USFWS], 
2023a). As of 1990, there was an estimated 52% reduction in 
Texas’ original wetland acreage, but there has been no recent 
assessment of statewide wetland loss or gain since then (Dahl 
& Stedman, 2013). We reviewed available literature related to 
wetlands and the challenges they face in Texas and present a 
synthesis of ecologically descriptive and timely issues. We also 
discuss relevant legislation and strategies currently in practice 
in Texas to protect and conserve wetlands.

Definition of Wetlands and Factors Contributing to 
Their Patterns

The formation of a wetland occurs in areas where there is 
a reliable water source at or close to the surface of the land 
(Mitsch & Gosselink, 2015). There are many different types 
of wetlands, each with its own plant communities and soil 
types. Wetland types found in Texas are described in detail in 
Appendix 1. There are, however, certain features that all wet-
lands have in common and that make them different from 
most other ecosystems. The most obvious feature is moisture, 
which leads to distinctive patterns of energy flow and storage. 
All living organisms (apart from some very specialized fungi 
and bacteria) require molecular oxygen (O2) for respiration. 
Microbial respiration in the soil drives the decomposition of 
organic matter (e.g., dead plant materials, animal waste), and 
decomposition rates vary according to hydrology. 

Water inhibits the availability of O2. In environments where 
water flows quickly or is turbulent, dissolved O2 may be con-
siderably higher than in a setting in which water is standing 
and has little opportunity to interact with the air. The fast-flow-
ing environment will have higher decomposition rates relative 
to the still water, leading to the development of different soil 
types. In systems that have little available dissolved O2, anaer-
obic processes dominate and produce soils with low organic 
decomposition rates. Likewise, wetlands with high concentra-
tions of dissolved O2 are dominated by aerobic nutrient pro-
cesses and are characterized by high organic decomposition 
rates. The dominant nutrient process in wetland soils ultimate-
ly determines the microbial, plant, invertebrate, and vertebrate 

communities it can support. It also influences the capacity of 
the wetland to store organic matter and dissolved gases.

The position and durability of the water supply are influ-
enced by various factors, including climate, physiography, 
hydrology, and land/water use. Annual precipitation and run-
off rates in Texas fluctuate each year and vary by location and 
season. In general, annual mean precipitation increases from 
west to east. January normal minimum temperatures increase 
from north to south. However, there is no July normal maxi-
mum temperature gradient along the same axis. Instead, the 
July normal maximum temperature increases moving west to 
east along the Rio Grande (Nielsen-Gammon, 2011; PRSIM 
Climate Group, 2023).

Potential evapotranspiration (PET) decreases from west to 
east across the state. In West Texas, annual lake evaporation 
surpasses annual precipitation by four to five times, while in 
East Texas, annual precipitation is almost equivalent to annu-
al evaporation. The regions that experience the greatest yearly 
precipitation and the lowest PET are also the regions with the 
largest wetland coverage. East Texas accounts for over 50% of 
the total wetland acreage in the state (Fretwell et al., 1996).

Importance of Wetlands in Texas

Wetlands provide critical ecosystem services, including wild-
life habitat, flood storage and control, aquifer recharge, water 
quality improvement, and pollutant breakdown and storage of 
carbon (C), methane (CH4), sulfur (S), nitrogen (N), and other 
gases (Mitsch & Gosselink, 2000; Mitsch et al., 2013; Hiraishi 
et al., 2014). They provide crucial habitat for a diverse range of 
birds, mammals, reptiles, amphibians, fish, invertebrates, and 
plants. They also provide human recreational opportunities 
including boating, paddling, fishing, hunting, birdwatching, 
hiking, and nature photography. Thus, responsible wetland 
stewardship is essential for maintaining the health and resil-
ience of both natural and human communities.

Wildlife

Texas sits in the middle of the Central Flyway, one of the 
four major flyways in North America, and sees up to 400 mil-
lion migratory birds pass through each year (Gauthreaux & 
Belser, 1999; Russell, 2005). Of the 338 Nearctic-Neotropi-
cal migrant bird species occurring in North America, 98.5% 
have been recorded in Texas (Shackelford et al., 2005). Texas 
offers crucial stopover points for migratory birds; many follow 
marshes on the coast and playas in far North Texas as they 
take their annual roundtrip journey between their wintering 
and breeding grounds (Smith et al., 2004b; Shackelford et al., 
2005; Contreras Walsh et al., 2017; Fern & Morrison, 2017). 
Birds are highly effective indicators of environmental well-be-
ing and overall ecosystem health (Burger & Gochfeld, 2004). 
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Capacity to monitor numerous bird species across extensive 
geographical areas surpasses that of any other animal category, 
which has allowed the implementation of multiple standard-
ized bird-monitoring datasets in North America, some of which 
provide nearly five decades of population data (Rosenberg et 
al., 2019). A recent synthesis of range-wide population size 
estimates across 529 species and almost all biomes (e.g., boreal 
forest, arid lands, coasts, wetlands) reveals a net loss of approx-
imately 2.9 billion birds, a 29% decline in North American 
since 1970 (Rosenberg et al., 2019). Abundance data from the 
Next Generation Weather Radar system (NEXRAD), a conti-
nent-wide weather radar network, indicate a similar decline in 
migrating birds within the Atlantic Flyway over the past decade 
(Dokter et al., 2019; Kranstauber et al., 2020; Rosenberg et al., 
2019). Significant decline in abundance was seen in all breed-
ing biomes except wetlands (Rosenberg et al., 2019). These 
data include only 95 of the 138 wetland-dependent species of 
continental breeding birds and not those that use wetlands for 
overwintering or migratory habitat. Approximately one-third 
of bird species in North America require wetlands to complete 
at least some of their life cycle (Chesser et al., 2021). A growing 
body of evidence suggests that wetlands are crucial to the sur-
vival of breeding, migratory, and overwintering birds, and con-
tinued wetland loss may accelerate extinction rates in North 
America (Gibbs & Kinkel, 1997; Golden et al., 2022; Niering 
et al., 1988; Şekercioğlu et al., 2004; Strassburg et al., 2020).

In addition to birds, many species of mammals in Texas are 
dependent on wetlands. Some species of bats (e.g., eastern red 
bat, Lasiurus borealis; big brown bat, Eptesicus fuscus) tend to 
roost near or in wetlands, likely due the concentration of prey 
(members of Lepidoptera and Hemiptera, among others) in 
these areas (Krusic & Neefus, 1996; Rydell et al., 1996). In 
East Texas, Rafinesque’s big-eared bat (Corynorhinus rafin-
esquii) and federally endangered southeastern myotis (Myotis 
septentrionalis) commonly roost in hollow trees in bottomland 
hardwood forests near slow-moving rivers (Ammerman et al., 
2012).

Texas is home to 231 species of reptiles and amphibians, 
many of which are wetland obligate (71 amphibian and 12 rep-
tile species; David, 1975; Dixon, 2000; Whiting et al., 1997). 
Of the 12 wetland obligate reptile species in Texas, four are 
federally or state listed as either endangered or threatened: alli-
gator snapping turtle (Macrochelys temminckii), Brazos water 
snake (Nerodia harteri), Chihuahuan mud turtle (Kinosternon 
hirtipes murrayi), Cagle’s map turtle (Graptemys caglei; Texas 
Parks and Wildlife Department [TPWD], 2023). Sixteen of 
the amphibian species in Texas are also federally or state listed 
as either endangered or threatened: Austin blind salamander 
(Eurycea waterlooensis), Barton Springs salamander (Eurycea 
sosorum), black-spotted newt (Notophthalmus meridionalis), 
Blanco blind salamander (Eurycea robusta), Cascade Caverns 
salamander (Eurycea latitans), Comal blind salamander (Eury-

cea tridentifera), Georgetown salamander (Eurycea naufragia), 
Houston toad (Anaxyrus houstonensis), Jollyville Plateau sala-
mander (Eurycea tonkawae), Mexican burrowing toad (Rhino-
phrynus dorsalis), Mexican treefrog (Smilisca baudinii), Salado 
salamander (Eurycea chisholmensis), San Marcos salamander 
(Eurycea nana), sheep frog (Hypopachus variolosus), South 
Texas siren (large form; Siren sp. 1), Texas blind salamander 
(Eurycea rathbuni), and white-lipped frog (Leptodactylus fragi-
lis; TPWD, 2023). 

Many species of fish also rely on wetlands for their spawning, 
juvenile development, or life cycle. At present, over 170 and 
180 freshwater and saltwater fish species, respectively, can be 
found in Texas. Many of these fish species are wetland obli-
gate or rely on wetlands for some portion of their life cycle. 
Freshwater species like largemouth bass (Micropterus salmoides 
salmoides), bluegill (Lepomis spp.), and catfish (members of 
Siluriformes) use wetlands for spawning and rearing of their 
young (Chumchal & Hambright, 2009). Likewise, saltwater 
species like red drum (Sciaenops ocellatus) and spotted seatrout 
(Cynoscion nebulosus) use wetlands as nursery areas during 
their juvenile stages. Some species are wetland-obligate and 
require wetland habitat for the entirety of their life cycle. Alli-
gator gar (Atractosteus spatula) is the largest freshwater fish in 
Texas and one of the largest in North America (Buckmeier, 
2008). This species is often found in the backwater swamps 
and flooded riparian zones in the southern and eastern portion 
of the state and requires both wetland types to complete its 
life cycle (Buckmeier, 2008; Lee & Wiley, 1980). Alligator gar 
are slow-growing, long-lived, and believed to be declining in 
numbers throughout their range (Cashner, 1995; Pflieger et 
al., 1975).

Socioeconomic

In addition to directly supporting fish and wildlife popula-
tions, wetlands also provide important ecosystem services that 
support the Texas economy and its people (Table 1).

These estimates of economic impact include both direct 
spending on fishing-related goods and services (e.g., fishing 
licenses and equipment) and indirect spending (e.g., lodg-
ing, guides, and other travel-related costs) from the multiplier 
effects of that spending. For private landowners, hunting lease 
income often exceeds agricultural income, and recreational use 
is the highest and best use of the land (Baen, 1997; Little & 
Berrens, 2008).

Wetlands act as natural sponges, absorbing and storing large 
amounts of water during times of heavy rainfall or flooding. 
This helps to reduce the risk of downstream flooding and 
damage to property (Antolini et al., 2020). Coastal wet-
lands act as a buffer to storm surges, slowing the water flow 
and providing habitat for soil-stabilizing plants, preventing 
erosion (Feagin et al., 2009; Maymandi et al., 2022). The 
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Activity Gross spending ($ billions) Jobs supported
Waterfowl hunting 1 1 14,000

Hunting 1, 2 + 1.2 32,000
Freshwater fishing 1, 2, 3 4.1 56,000
Saltwater fishing 1, 2, 3 1.3 14,000

Non-consumptive recreation 1, 2 ++ 4.1      ––– +++

+ exclusive of waterfowl 
++ wildlife watching, outdoor physical recreation, and other non-resource consumptive activities. 
+++ number not available 
1 The state of outdoor tourism, recreation, and ecotourism, 2021  
2 Southwick Associates, Inc., 2007  
3 American Sportfishing Association, 2020 

Table 1. Economic impacts of recreational waterfowl hunting, hunting (waterfowl excluded), and fresh and saltwater fishing in Texas.

exact dollar amount of storm damages alleviated or prevented 
by wetlands in Texas can vary depending on the location and 
severity of storms. However, localized estimates indicate the 
economic value of these benefits is significant. 

The Environmental Defense Fund (2023) estimated the 
wetlands in the Galveston Bay region of Texas provide storm 
protection benefits worth over $2 billion annually. Another 
study valued the storm protection benefits of the wetlands in 
the Sabine-Neches Lake estuary at up to $1.2 billion annually 
(Maymandi et al., 2022). The same study argues these wet-
lands can reduce the damage caused by storms by up to 70%. 
These estimates consider the value of the wetlands’ ability to 
reduce flood heights and prevent property and infrastructure 
damages. 

More recently, coastal wetlands were estimated to have 
reduced the amount of flooding during Hurricane Harvey by 
up to 80% in parts of the Houston area, protecting infrastruc-
ture and likely saving lives (Armitage et al., 2020). Natural 
coastal habitats in Texas annually protect approximately $2.4 
billion worth of property and thousands of people, including 
many families living below the poverty line and other disad-
vantaged communities (Arkema et al., 2013). The Greater 
Houston Metropolitan Area has lost an estimated 3.7% of its 
tidal wetland acres over an 11-year period (2008–2019) and 
5.5% of its natural freshwater (nontidal) coastal wetlands over 
an 18-year period (1992–2010; Al-Attabi et al., 2023; Jacob 
et al., 2014). However, concentrated loss in some areas has 
been substantially more severe. Harris County experienced 
the greatest loss of freshwater wetlands during that period 
(15,855 acres; 29%; Jacob et al., 2014). Hurricane Ike, mak-
ing landfall as a Category 2 Hurricane in 2008, caused $7.27 
billion in damages in the Galveston Bay area (Al-Attabi et al., 
2023; Blake et al., 2011). Given the wetland loss since 2008, 
hydrological and economic models project a net increase of 

$2.52 billion if Hurricane Ike had made landfall in 2019 
(Al-Attabi et al., 2023; Dotson, 2016).

Water Quality 

Wetlands absorb and filter a variety of sediments, nutrients, 
and other natural and human-made pollutants that would 
otherwise degrade rivers, streams, and lakes (Fisher & Acre-
man, 2004; Nichols, 1983). The ability of wetlands, such as 
river floodplains and coastal areas, to hold these nutrients 
results in a high rate of primary productivity and provides 
nutrients for invertebrates such as shrimp, crabs, worms, and 
microfauna (Greenway, 2007; Nichols, 1983).

The nitrogen (N) cycle in wetlands is extremely complex 
(Nichols, 1983). N input is a primary driver in wetland 
biogeochemical processes through several pathways: denitrifi-
cation (the uptake of nitrate [NO3

–-N] in anaerobic soils); N 
fixation (the fixing of atmospheric N into bioavailable forms); 
ammonia (NH3) volatilization; nitrification; plant and micro-
bial uptake; ammonification; nitrate-ammonification; anaer-
obic NH3 oxidation; fragmentation; sorption; desorption; 
burial; and leaching (Nichols, 1983; Vymazal, 2007). In some 
studies, anerobic soils found in wetlands and lake bottoms 
had the capacity to capture as much as 90% of the added 
NO3

–-N within a few days (Wang et al., 2001). Constructed 
wetlands have the capacity to remove 40–50% of N from the 
water column (Vymazal, 2001, 2005; Vymazal et al., 2005). 
Constructed wetlands are engineered systems often created 
with the goal of restoration, imitating the biochemical cycles 
occurring in natural wetlands, or as a mitigation requirement 
satisfying the National Wetlands Mitigation Action Plan 
(NWMAP). In some cases, constructed wetlands can achieve 
up to 85–86% removal of phosphorous (P), rivaling the 
capacity of naturally occurring systems, specifically riparian 
wetlands (Doherty et al., 2015). 
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The George W. Shannon Wetlands project located at the 
Richland Creek Wildlife Management Area in Freestone 
County, Texas, is a 1,700-acre wetland complex constructed 
and managed by TPWD for the purpose of nutrient reduc-
tion in municipal wastewater. A series of 24 wetland units 
adjacent to the Trinity River filters 90 million gallons of water 
daily from the Tarrant Regional Water District (TRWD). The 
wetlands complex effectively removes 95% of suspended sed-
iment as well as 77% of N and 45% of P from TRWD efflu-
ent. As of 2023, TRWD is constructing an additional water 
reuse project adjacent to Cedar Creek Reservoir. This 3,300-
acre wetland complex will function similarly to the East Fork 
Water Reuse Project and the George W. Shannon Wetlands 
project and is expected to filter an average of 156 million 
gallons per day, delivering water to 1.1 million residents.

Climate

Wetlands act as important nutrient sinks, storing large 
amounts of C in their soils and vegetation (Mitra et al., 2003; 
Mitsch et al., 2013). Freshwater wetlands in Texas sequester 
an average of 115 grams of C per square meter per year (Han-
sen & Nestlerode, 2014). This is equivalent to 1.2 billion tons 
stored in inland (nontidal), freshwater wetlands in the state as 
of 2009. 

Some studies have indicated that coastal (tidally influenced) 
wetlands sequester up to 10 times more C than freshwater wet-
lands (Nahlik & Fennessy, 2016; Taillardat et al., 2020). This 
is likely due to the anaerobic soils found in coastal wetlands 
that slow down the decomposition of organic matter, allowing 
more C to be stored in the soil. Additionally, coastal wetlands 
are often flooded with saltwater, which can kill microbes that 
would otherwise decompose organic matter, further slowing 
decomposition (Morris et al., 2012; Nahlik & Fennessy, 2016). 

Wetlands can also sequester substantial amounts of carbon 
dioxide (CO2), methane (CH4), and nitrous oxide (N2O), three 
potent greenhouse gases (GHG; any gas that absorbs and emits 
infrared radiation) that contribute to atmospheric regulation 
and climate cycles (Mitra et al., 2003; Segers, 1998; Taillardat 
et al., 2020; Wahlen, 1993). The wetlands of the Texas Gulf 
Coast are estimated to sequester up to 2.8 million metric tons 
of CO2 equivalent (CO2e) annually, including both CH4 and 
N2O (Hansen & Nestlerode, 2014). Restored and constructed 
wetlands in Texas can sequester up to 2,444 and 77 kilograms 
of CH4 and N2O, respectively, per hectare annually (Hansen & 
Nestlerode, 2014).

Wetlands can serve as C sinks, meaning they absorb more 
C and CO2 from the atmosphere than they release. Howev-
er, they are also a significant source of CH4, a more potent 
GHG (Wahlen, 1993). While CO2 is more abundant in the 
atmosphere than CH4 or N2O, CH4 has a global warming 
potential over a 100-year period that is 25 times greater than 

CO2 (Forster et al., 2007). Several studies suggest the sudden 
rise in atmospheric CH4 may be caused by wetlands (Dean et 
al., 2018; Zhang et al., 2014). Wetland CH4 is produced by 
methanogens, microorganisms typically found in anaerobic 
environments. Until recently, CH4 production has been con-
sidered to be at its highest level in permanently saturated, fully 
anoxic soils below the water column in which most organic 
carbon is stored (Dean et al., 2018). Recent evidence suggests 
that the highest CH4 emissions from some wetland soils are 
produced in the near-surface, aerobic layers via reduction-ox-
idation cycles (redox oscillation; Angle et al., 2017; Yang et 
al., 2017). However, some compounds (e.g., polyphenols) have 
been observed acting as biogeochemical barriers to the creation 
of CO2 via organic C degradation (i.e., carbon mineralization) 
in aerobic soils (Freeman et al., 2004). Thus, soils that expe-
rience drought cycles are likely to demonstrate decreased C 
storage and increased emissions of GHGs, particularly CH4, 
during drought recovery (i.e., rewetting). Temporary exposures 
to oxygen (O2) during dry periods may reduce the inhibito-
ry effects of polyphenols on carbon mineralization (Fenner & 
Freeman, 2011).

CH4 emissions can be increased by human activities such 
as draining, as well as natural flood-drought and freeze-thaw 
cycles (Le Mer & Roger, 2001; Megonigal et al., 2004; Metje 
& Frenzel, 2007). As the climate changes, the frequency and 
severity of flood-drought events are becoming more common 
and CH4 emissions from wetlands may be accelerated, as they 
are repeatedly inundated and dried up (Cao et al., 1998; Mor-
ris et al., 2012).

CLIMATE CHANGE AND LAND 
CONVERSION IMPACTS ON TEXAS 
WETLANDS

Changes in Precipitation and Temperature Patterns 

Precipitation patterns vary across Texas, as have their recent 
trends. In the eastern portion of the state, there has been a 
pronounced precipitation increase. Changes in precipitation, 
along with a warmer atmosphere, have intensified weath-
er events (e.g., storms, droughts, flash flooding) and shifted 
rainfall to earlier or later in the year, disrupting wetland plant 
germination, water availability for migrating and resident wild-
life, and salinity of coastal wetlands, as well as escalating ero-
sion issues (Burris & Skagen, 2013; Hatfield & Prueger, 2004; 
Skendžić et al., 2021; Trenberth, 2011). Extreme oscillation 
between heavy rainfall and severe drought has led to drastic 
changes in hydrological regimes of Texas’ wetlands. However, 
this pattern is most pronounced and arguably most impact-
ful for the inland wetlands of East Texas, where precipitation 
has increased by an average of 3.8 centimeters (cm; 1.5 inches 
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[in]) per decade since 1950 (Nielson-Gammon, 2011; Vose et 
al., 2014). The historical average annual rainfall in East Texas 
is 119.4 cm (47 in), and it is expected to rise to 132.1 cm 
(52 in) by 2050, a 10% increase (PRISM Climate Group, 
2023). More meaningful than average annual precipitation 
is the increasingly episodic nature of rainfall in the region, as 
evidenced in recent decades by several high-profile events. In 
2017, Hurricane Harvey dumped up to 152.4 cm (60 in) of 
rain in some areas over the course of 10 days, causing signifi-
cant flooding, billions of dollars in property damage, and the 
loss of 68 human lives (Frame et al., 2020; Jonkman et al., 
2018). Extreme episodic flooding, exacerbated by the spread 
of impervious surfaces (i.e., concrete), has caused wetland loss 
through sedimentation, subsidence, and submergence (White 
& Tremblay, 1995). Approximately 63% of the original bot-
tomland hardwood forests (inland forested wetlands) in East 
Texas has been lost (Frye, 1987; McWilliams, 1986). This esti-
mate is based on data available in 1987, so an assumption of 
further deterioration and loss is appropriate given intensifying 
conditions known to be damaging to these systems (e.g., sub-
surface liquid withdrawal, urbanization, more frequent storm 
events). Increases in impervious surfaces from urbanization 
are associated with large pulses of stormwater runoff, reducing 
water quality of rivers and wetlands (e.g., increased turbidity, 
nutrient loading, increased heavy metal concentrations; Ehren-
feld, 2000). The Fourth National Climate Assessment, released 
in 2017 by the U.S. Global Change Research Program, pro-
jected an increase in the frequency and intensity of extreme 
weather events (e.g., droughts, floods, and heat waves) in the 
coming decades (Wuebbles et al., 2017).

In contrast to the challenges in East Texas, precipitation in 
West Texas has decreased by an average of 5.1 cm (2 in) per 
decade since 1950 (Vose et al., 2014). Water scarcity in oth-
er areas across the state and increasingly severe droughts have 
increased in recent years. The city of El Paso experienced its 
driest year on record in 2018, causing dangerous water short-
ages and emergency water conservation measures (PRISM Cli-
mate Group, 2023; Vose et al., 2014). To maintain their water 
supply during droughts, cities and water cooperatives often 
hold back more water in reservoirs, reducing the amount of 
water released downstream. This can have a negative impact 
on riparian wetlands, which rely on a steady flow of water to 
provide wildlife habitat and other ecosystem services char-
acteristic of healthy wetlands (Mitchell et al., 2021; Mix et 
al., 2016; Samady, 2017). Sustained drought conditions can 
reduce freshwater discharge from rivers in coastal marshes, fur-
ther compounding saltwater intrusion attributable to sea level 
rise (Silliman et al., 2005). Likewise, severe inland flooding 
can increase freshwater discharge into historically brackish or 
saline marshes, altering sensitive hydrological regimes to which 
some vegetation and wildlife are specially adapted (Falcini et 
al., 2012). 

Data from the National Oceanic and Atmospheric Adminis-
tration (NOAA) have demonstrated a gradual increase (0.8°C) 
in average temperature in Texas over the past century, with the 
warmest years occurring in recent decades (National Centers 
for Environmental Information [NCEI], 2023). In a report 
compiled by the Office of the Texas State Climatologist, the 
average Texas surface temperature in 2036 is projected to be 
1.67°C (3.0°F) warmer than the 1950–1999 average and 1°C 
(1.8°F) warmer than the 1991–2020 average (Nielsen-Gam-
mon et al., 2021). Severe and sustained heat waves have also 
become more frequent in the state, causing higher evaporation 
rates and increased water temperatures in rivers and wetlands 
(Nielsen-Gammon et al., 2021; Overpeck & Udall, 2010; 
Strzepek et al., 2010).The number of 38°C (100°F) days in 
Texas is expected to approximately double by 2036, with a 
higher frequency of 38°C (100°F) days in urban areas (Niel-
sen-Gammon et al., 2021). 

Wetlands also play a critical role in mitigating impacts of 
microbial parthenogenic exposure to wildlife and human 
populations. Wetlands can reduce disease risk and exposure 
to dangerous pathogens (e.g., fecal coliforms, Giardia spp., 
Cryptosporidium spp.) through sediment trapping, nutrient 
transformation, plant uptake, adsorption, and microbial break-
down (Hsu et. al, 2017; Johengen & LaRock, 1993; Martin & 
Reddy, 1997; Vandegrift et. al., 2010). The effect of climate 
change on emerging infectious wildlife diseases in wetlands is 
threefold: (1) increasing frequency of extreme rainfall events 
can degrade water quality in wetlands through the sudden 
influx of nutrient-rich stormwater runoff, speeding up repro-
duction and proliferation of disease-causing organisms present 
in the water; (2) increasing temperatures can fuel harmful algal 
blooms by allowing for longer growing (i.e., reproductive) 
seasons (Refsnider et. al., 2021; Wells et. al., 2020; Wobeser, 
1992); and (3) intensifying droughts can concentrate wildlife 
into smaller areas, increasing density and likelihood of dis-
ease outbreaks such as cholera and other water-borne diseases 
(Derne et al., 2015).

Fecal coliforms are the most common pollutant in waterways 
and wetlands (Geldreich, 1966). Even typical rainfall events 
cause increases in coliform concentration via nonpoint source 
pollution such as municipal treatment plants, storm water 
overflows, and agricultural runoff (Hill et. al., 2006; Kelsey et. 
al., 2004). Fecal coliform numbers and rainfall are so strongly 
correlated that rainfall can accurately predict coliform concen-
tration, with some states using rainfall thresholds to regulate 
shellfish and game fish harvest due to public health concerns 
(Kelsey, 2006; Leight & Hood, 2018; Mallin et. al., 2001; San-
tiago-Rodriguez et. al., 2012). Pulses of nutrient-rich urban and 
agricultural runoff can also feed other harmful organisms such 
as cyanobacteria (often blue-green algae). While the cyanobac-
teria itself is not toxic, large pulses in reproduction (harmful 
algal blooms) trigger the production of hepatotoxin (Msagati 
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et. al., 2006). The ingestion of hepatotoxin creates acute and 
chronic effects in wildlife and humans including liver damage, 
reproductive failure, intestinal damage, and, in some cases, 
death (Heil & Muni-Morgan, 2021; Young et. al., 2020). Cya-
nobacteria proliferate in warm, relatively still water—condi-
tions characteristic of urban stormwater retention ponds, shal-
low drinking-water reservoirs, and wetlands—and are expected 
to become more common due to diminishing reservoir levels 
and increasing temperature (Patiño et. al., 2014; Wells et. al., 
2020).

Wildlife species that inhabit wetlands, such as waterfowl, are 
natural reservoirs for zoonotic pathogens such as Escherichia 
coli (E. coli) and the H5N1 virus that causes highly pathogen-
ic avian influenza (Hsu et. al, 2017; Samuel, et. al., 2005). 
Localized outbreaks of zoonotic disease among waterfowl are 
often density-dependent and can pose a serious threat to pub-
lic health (Wobeser, 1992). Waterfowl tend to be more local-
ly concentrated in wetlands during periods of drought due to 
the diminishing availability of freshwater, which often leads to 
disease outbreaks (e.g., avian cholera, avian influenza). These 
diseases can spread to humans as well as domestic birds, deci-
mating some poultry farms (Capua & Marangon, 2006; Samy 
& Naguib, 2018). As the human population grows and urban 
areas expand, exposure to and contact with wildlife and these 
waters is expected to increase, leading to more potential disease 
spillover events. 

Rising Sea Levels and Coastal Wetlands

Global sea level has been rising an estimated 0.2 millime-
ters (mm)/year (0.008 in/year) in recent millennia (pre-1900) 
and 1.8 mm/year (0.071 in/year) during the twentieth century 
(Gornitz & Lebedeff, 1987; Meehl et al., 2007). Recent data 
indicates a pronounced acceleration in the rate of global sea 
level rise (GSLR), currently estimated to be 3.0 mm (0.12 in) 
annually (Anderson et al., 2022). The effects of GSLR vary 
by location and are often measured at a more localized scale. 
Relative sea level rise (RSLR) is the change in ocean height rel-
ative to coastal land and is driven primarily by three processes: 
local variations in sea level (e.g., tides), relative land motion 
(e.g., land subsidence, coastal sediment transport), and eustatic 
sea level rise (ESLR; changes in mean ocean height as a result 
of increasing temperatures that cause thermal expansion and 
melting ice sheets; McKay et al., 2011). The impacts of RSLR 
on Texas wetlands are significant and multifaceted, with poten-
tial consequences for both the ecological and human commu-
nities that depend on these valuable ecosystems (Cahoon et al., 
2006; Desmet et al., 2018; Feagin et al., 2009; Taha, 2007). 

RSLR can lead to saltwater intrusion, an upstream move-
ment of saltwater into historically freshwater wetlands and riv-
ers, which may shift the composition of plant communities, 
thwart seed germination, and suppress photosynthetic efficacy 

via decreased plant respiration (Baldwin et al., 1996; Jackson & 
Drew, 1984; Pearlstine et al., 1993; Perry & Hershner, 1999; 
Peterson & Baldwin, 2004; Pezeshki et al., 1987; Schuyler et 
al., 1993). Increases in the soil salinity can stress plants (even 
those well-adapted to saline conditions) by inhibiting water 
uptake from the roots, damaging plant cells, and potentially 
leading to death (Pezeshki et al., 1989; Wilson et al., 2018). 
The reduction of freshwater availability can lead directly to veg-
etation loss and loss of wildlife habitat for resident and migra-
tory species, crucial spawning grounds for commercially and 
recreationally valuable fishes and shellfishes, and freshwater 
for drinking and irrigation in vulnerable coastal communities 
(Anderson & Al-Thani, 2016; Grace & Ford, 1996; Tully et 
al., 2019; Wilson et al., 2018). The subsurface movement of 
seawater into coastal aquifers can also result in salinization of 
wetlands with a significant groundwater connection (Abdoul-
halik & Ahmed, 2017). Fluctuating sea levels (e.g., tides) cou-
pled with intensifying groundwater pumping (for municipal or 
industrial use) can disrupt the natural groundwater hydraulic 
gradient leading to land subsidence and amplifying the intru-
sion process (Hussain et al., 2019). Subsidence rates on the 
Texas coast range from less than 2 mm (0.08 in) per year to 7 
mm (0.28 in) per year varying by land use practices and subsur-
face geology (Letetrel et al., 2015). Tidal marshes have histor-
ically kept pace and maintained relative equilibrium by build-
ing soil volume (i.e., accretion; Redfield, 1965; Pasternack, 
2009). However, sudden or sustained increases in saltwater 
inundation can upset the balance between aerobic and anaer-
obic processes in the soil, which may reduce organic matter 
decomposition rates (Bridgham et al., 1998; Ponnamperuma, 
1984). Because organic matter accumulation is the main driver 
of soil accretion in tidal freshwater marshes, reduced organic 
matter production can substantially impede the ability of these 
marshes to keep pace with RSLR (Neubauer, 2013; Spalding & 
Hester, 2007; Weston et al., 2011). The compounding effects 
of increasing subsidence rates and an accelerating ESLR are 
expected to result in substantial loss of historically freshwater 
wetlands on the Texas coast (Figure 1; NCEI, 2023).

Texas’ coastal wetlands are also at risk of erosion due to 
RSLR and more intense and frequent storms. There have been 
a number of high-profile events in recent years in which Tex-
as wetlands have been damaged or destroyed by degradation 
and loss attributable to RSLR (e.g., Hurricane Katrina in 2005 
and Hurricane Laura in 2020; Cadigan et al., 2022; Stagg et 
al., 2021; Yao et al., 2020). Increased inundation and wave 
energy can cause the shoreline to erode, resulting in the loss of 
valuable wetland habitat and reduced water quality. Between 
1950 and 1989, Galveston Bay lost an estimated 12% of saline 
marsh due to increased wave action and land subsidence associ-
ated with RSLR (White et al., 1993; White & Morton, 1997). 
Sediment from eroded soil can also contain nutrients and 
pollutants that are released into the water column, leading to 
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Figure 1. Representation of current and projected sea level rise of 1 foot by 2100 on the upper Texas coast.

reduced water quality and harmful algal blooms (Terhaar et al., 
2021). Erosion-caused wetland degradation can create a neg-
ative feedback loop: As sea levels rise, wetlands are inundated 
more frequently and exposed to more wave energy. This process 
can lead to vegetation loss and soil erosion, which reduces the 
wetlands’ ability to buffer storm surge. As a result, storm events 
can be even more damaging to the wetlands and the sensitive 
wildlife communities that rely on them (Farber, 1987; Mor-
ton & Barras, 2011; Ravens et al., 2009; Truong et al., 2015; 
White & Tremblay, 1995).

The rising sea level and compounding effects of erosion, 
saltwater intrusion, and changing precipitation patterns are 
causing—and will continue to cause at an increasing pace—a 
migration of freshwater wetlands inland (Van Dolah et al., 
2020; Wuebbles et al., 2017). However, significant loss of fresh 
and intermittently flooded marsh will likely occur as sea lev-
els rise, and few opportunities are available for marsh zones to 
migrate inland. This phenomenon, known as coastal squeeze, 

occurs when intertidal habitats are lost due to the highwater 
mark being fixed by a defense or structure and the low water 
mark migrating landward in response to sea level rise (Pontee, 
2013). Shifts in the distribution of wetlands along the Texas 
coast pose severe challenges to the approximate 6.8 million 
people (22.7% of the state’s population) who live in this zone 
(U.S. Census Bureau, 2020).

State and federal agencies may need to anticipate a rapid 
modification of coastal conservation priorities as shoreline 
fortification and the resulting urban development inland will 
likely cause more loss of sensitive wetland systems and wildlife 
habitat.

Land Conversion

Dams in the United States disrupt river discharges at a much 
higher degree than any hydrological shifts anticipated from cli-
mate change (Graf, 1999; Tonitto & Riha, 2016). Some projec-



Texas Water Journal, Volume 14, Number 1

145The State of Texas Wetlands: A Review of Current and Future Challenges

tions estimate hydrological impacts of climate-induced reduc-
tion (15–20%) of annual water yield and sharp increases in 
flood magnitude and frequency (Tegart et al., 1990; Waggoner, 
1990; Watson & Adams, 2010). However, many dams in the 
United States have storage capacities greater than the annual 
runoff generated by their watersheds and reduce downstream 
flow by almost 100% (Baker et al., 1990; Graf, 1999). Texas 
has the greatest number of dams in the United States (7,381) 
and achieved its storage capacity exceeding mean annual runoff 
(exceedance) in 1962. While many states are removing dams 
over growing concerns regarding hazard mitigation, river resto-
ration, and health of downstream wetlands, Texas has not yet 
removed any dams for primarily ecological reasons (Grabowski 
et al., 2018; Graf, 1999; Dascher & Meitzen, 2020).

The Texas Water Development Board (TWDB) has includ-
ed the installation of 22 new reservoirs (14 to be functional 
by 2030 and the remaining eight to be functional by 2050) 
in its most recent state water plan (TWDB, 2022). TWDB 
has also identified 24 “unique reservoir sites” that present a 
unique value for growing water needs in the state (TWDB, 
2022). While reservoirs can create additional fisheries habitat 
and increase the number of lacustrine wetlands, significant 
adverse impact can occur to existing palustrine wetlands. Wet-
lands are lost through direct inundation, modification of veg-
etation communities, construction of dam and spillways, and 
altered downstream hydrology from proposed reservoirs. Over 
1.5 million acres of natural vegetation, including over 600,000 
acres of bottomland hardwoods, are estimated to have been 
lost from reservoirs already constructed as of 1995 (TPWD, 
1995). Total losses of bottomland hardwoods from reservoirs 
already built or proposed is estimated to exceed 860,000 acres 
(TPWD, 1995; TWDB, 2022). These losses are not spread 
evenly over remaining riparian vegetation but rather are con-
centrated principally within the East Texas river systems.

In addition to reservoir development, more changes are 
expected in riparian systems from ongoing timber harvest 
operations (Murphy, 1976; Texas Forest Service, 1992). These 
operations are sustained by a demand for hardwood products 
and a continuing desire from timber owners to market timber 
from locations that are difficult to access. Such timber oper-
ations have and will include conversion of hardwood forests 
to pine plantations, mixed pine-hardwood stands, or younger 
stands of hardwood timber (Larson et al., 1981; Parajuli et al., 
2017).

Rice fields can provide habitat for wetland-dependent taxa, 
but historic and current rice management practices are driven 
foremost by agricultural economic decisions and may result in 
a spectrum of conservation value. Most rice rotation lands in 
Texas exist in the former coastal prairie footprint, where mosa-
ics of grasslands and pothole wetlands once existed. Rice in 
Texas is typically cultivated on a 2- or 3-year rotation, such 
that a year of cultivation is followed by 1–2 years of other crops 

or fallow conditions. Consequently, the geographic footprint 
of rice rotation lands is two to three times the 185,000 acres 
cultivated annually in recent years (U.S. Department of Agri-
culture [USDA], 2023). However, total harvested rice acre-
age is only approximately one-third of the historical planted 
acreage. Factors influencing the reduction in rice cultivation 
acreage include expanding urban developments and simulta-
neous declines in available water during the growing season. 
Rice production practices have historically included a shallow 
water flooding regime after planting, and producers there-
fore need sufficient access to available water throughout the 
growing season (approximately March–October). Rice grown 
in Texas occurs within the historic Gulf Coastal Plain, and 
water availability occurs largely through either surface water 
diversion from the Colorado River or localized groundwater 
pumping. Within the last two decades, Colorado River sur-
face water availability has decreased and become less reliable, 
resulting from drought, increased urban municipal demand, 
and overallocation for agricultural consumption. As a result, 
annual rice production has steadily declined, and remaining 
acreage is heavily dependent on access to local groundwater 
pumping. When considering rice’s current conservation value, 
the declining footprint on the landscape is biologically sig-
nificant and can in part explain regional distribution shifts of 
migratory waterfowl that have historically utilized flooded rice 
fields within the Gulf Coastal Plain in winter (Jefferies et al., 
2004; Moore et al., 2023).

Total rice acreage planted in Texas has experienced long-
term declines since the 1960s, owing to shifting agricultural 
demands and diminishing freshwater availability (Figure 2). 
Changing agricultural technologies may have cascading effects 
on the conservation value of rice. Wetland-dependent birds 
have historically capitalized on the inefficiencies of agricultural 
production such as “waste rice” (residual rice not harvested by 
agricultural equipment) or the presence of agricultural weeds 
that provide energetic value. Late-winter flooded rice fields 
can also be extremely important for aquatic invertebrate pro-
duction that yield high sources of protein (Foley, 2015). Yet 
evolving technologies that increase production efficiency may 
simultaneously decrease value for wetland-dependent wildlife. 
For example, the advent of herbicide-resistant strains of rice 
seed has allowed producers to transition away from cultural 
practices to mitigate weed control and instead increase chem-
ical control of weeds. The predominant form of rice planting 
has shifted away from aerial seeding (historically used to con-
trol against competitive weeds) to drill-seeding of herbicide-re-
sistant rice varieties. As a result, the timing and extent of water 
applied to rice fields has shifted and may disproportionately 
affect bird species that use rice fields during spring migration 
or breeding (Hohman et al., 1994). Another evolving technol-
ogy is the use of seed- and soil-treated pesticides to mitigate 
effects of target pests, such as the rice-water weevil (Lissorhop-
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trus oryzophilus Kuschel). These pesticides are highly effective 
at reducing target taxa and are used widely across cropping 
systems because their application is usually associated with 
higher economic returns (Wilson & Tisdell, 2001). Howev-
er, many chemicals used are highly mobile in soil and water 
and have been found at high concentrations in wetland sys-
tems adjacent to treated crops (Krupke & Tooker, 2020; Main 
et al., 2014). While little research has evaluated the effects of 
seed-treated pesticides on aquatic invertebrates in planted rice 
in Texas or throughout the Gulf Coastal Plain, studies in other 
regions have demonstrated disrupted aquatic food webs in rice 
agricultural landscapes (Takeshita et al., 2020; Yamamuro et 
al., 2019). Emerging research suggests that many seed-treated 
pesticides have significant negative effects on nontarget verte-
brates such as wetland-dependent birds (Kuechle et al., 2022). 
Carbamate and organophosphate insecticides often used in 
rice production exhibit acute neurotoxicity by impeding activ-
ity of acetylcholinesterase, an enzyme involved in nerve signal 
transmission, leading to adverse reproductive effects and mor-
tality (Colovic et al., 2013; Fulton et al., 2013). Organochlo-
rine pesticides, a class of chemical compounds that includes 
dichlorodiphenyltrichloroethane (DDT) and endosulfan, are 
now formally banned for use in agricultural applications, but 
these compounds are still present at varying concentrations in 
many vertebrates and wetland soils (Hidalgo et al., 2021; Land 
et al., 2019; Mora et al., 2020). Other pesticides still wide-
ly used in rice agriculture also pose a serious risk to human 

health. Exposure to compounds like 2,4-dichlorophenoxy-
acetic acid, a heavily used pesticide in Texas rice agriculture 
to control the growth of broad-leaf plants, is documented to 
significantly increase the risk of Non-Hodgkin’s lymphoma in 
adults (McDuffie et al., 2001). Neonicotinoids, a popular class 
of chemical compounds used to treat insect pests in rice and 
other crop agriculture, have also been measured at relatively 
high concentrations in public drinking water and human urine 
(Thompson et al., 2023). A report by the U.S. Food and Drug 
Administration (2016) identified neonicotinoids as the most 
common pesticide found in baby formula and infant food in 
the United States. Neonicotinoids are persistent in the envi-
ronment and unlike most pesticides cannot be washed off food 
prior to consumption (Bonmatin et al., 2015; Chen, 2014). 
Although studies required for pesticide registration showed 
neonicotinoids to be less toxic to humans than to insects, toxic 
effects such as an increase in cancerous liver tumors in mice 
were noted (Gibbons et al., 2015). More recent research has 
begun evaluating productivity in trending furrow-irrigated 
rice practices to reduce water consumption (Chlapecka et al., 
2021). In the case of furrow-irrigation production, rice fields 
no longer hold a shallow flood throughout the growing season 
but rather experience short pulses of water and lack surface-wa-
ter ponding. If trends in limited water availability continue, 
rice production may function more similarly to a dryland crop 
and result in a reduced overall value for wetland-dependent 

Figure 2. Graph reporting the declines in total harvest rice acreage in Texas 1929–2022 (United States Department 
of Agriculture [USDA], 2023).
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taxa that have used summer rice fields under traditional pro-
duction practices (King et al., 2010).

Up until the mid-2000s, land conversion to agriculture was 
the largest driver of coastal wetland loss in Texas (Entwistle et. 
al., 2018). However, on the coast, this has been surpassed by 
loss from urban development and sea level rise (Armitage et. 
al., 2015; Keese, 2018). This loss is compounded by indirect 
effects of urban expansion. Impervious surfaces concentrate 
stormwater runoff, contaminating remaining wetlands and 
causing eutrophication and permanent changes in hydrology 
(Deegan et. al., 2012). Introduction of nonnative, ornamental 
plants can cause invasions and localized eradication of native 
wetland vegetation, decreasing the water filtration and nutri-
ent capture capacity of natural wetlands (Havens et. al., 1997; 
Wetzel, 2005). The Integrated Climate and Land-Use Scenar-
ios project administered by EPA predicts a 69% increase in 
urban land cover by 2100 statewide under the Shared Socio-
economic Pathways (SSP5) Representative Concentration 
Pathway scenario 8.5 (RCP85 climate and conversion scenario 
(EPA, 2017). 

CONSERVATION AND MANAGEMENT 
STRATEGIES FOR TEXAS WETLANDS

Policy and Legal Framework

The Clean Water Act (CWA) is a federal law (CWA, 2000) 
enacted in 1972 that regulates the discharge of pollutants and 
fill into the waters of the United States, including wetlands. 
The CWA is designed to protect the chemical, physical, and 
biological integrity of the nation’s waters by establishing basic 
structure and requirements for regulating pollutant discharges 
into the waters of the United States, including wetlands. The 
CWA requires individuals and entities seeking to discharge 
dredged or fill material (i.e., pollutants) into wetlands to obtain 
a permit from the U.S. Army Corps of Engineers (USACE). 
This permit process requires an evaluation of the potential 
impact on the wetland, as well as a consideration of alterna-
tive approaches that may be less harmful to the wetland. The 
CWA also establishes water quality standards for wetlands and 
other waters of the United States and requires states to develop 
programs to ensure these standards are met. It also provides 
for citizen suits against entities that violate the law, allowing 
individuals and groups to take legal action to protect wetlands 
in Texas and other states.

On May 25, 2023, the Supreme Court of the United States 
(SCOTUS) issued an opinion in Sackett v. EPA, a case chal-
lenging the proper way to determine whether a wetland is 
jurisdictional under the CWA. Before the opinion was issued, 
a wetland was considered jurisdictional under the CWA if it 
was 1) traditional navigable waters, territorial seas, and inter-
state waters; 2) impoundments of Waters of the United States 

(WOTUS); 3) tributaries to navigable waters or WOTUS 
impoundments; 4) wetlands adjacent to navigable waters or 
wetlands adjacent to waters with a significant nexus; or 5) 
intrastate lakes, ponds, streams, or wetlands that meet rela-
tively permanent standard or significant standard. According 
to EPA, a significant nexus exists if the water body (alone or 
in combination) significantly affects the chemical, physical, or 
biological integrity of the traditional navigable waters, territori-
al seas, or interstate waters. As wetlands are dynamic, wetlands 
need not be permanently ponded or maintain a continuous 
connection to navigable waters via surface water to fall under 
federal jurisdiction. The law originally allowed for hydrological 
variability, including periodic drought and flooding, inherent 
to most wetlands. In the Sackett v. EPA ruling, the court nar-
rowed the definition of WOTUS to include only wetlands that 
maintained a constant surface water connection to a navigable 
waterway. The interpretation of the language used in both the 
official ruling by SCOTUS and the subsequent policy enact-
ed by EPA to accommodate the decision is heavily contested 
within and amongst agencies. Courts and regulatory bodies are 
now faced with defining “constant” surface water connection 
and other conditions in which an intermittent hydraulic con-
nection may suffice to substitute this requirement. Interpreted 
in its most literal terms, the new definition of WOTUS sig-
nificantly reduces the federal protection afforded to wetlands 
by excluding those subject to dry periods, flooding, and puls-
es of dense vegetation growth that may temporarily provide a 
barrier between the wetland and a nearby navigable waterway. 
Ignoring wetlands that experience periodic disconnection to 
larger water bodies may result in a substantial loss of wetlands 
across the United States. According to the NWI classifications 
of wetlands, this ruling effectively removes federal protection 
for approximately 93% of wetlands in Texas (USFWS, 2023b).

The Coastal Zone Management Act (CZMA) of 1972 
(16 U.S.C. ch. 33 § 1451 et seq.), administrated by NOAA, 
encourages coastal states to develop and enact coastal zone 
management plans that preserve, protect, develop, and where 
possible, restore or enhance the resources of U.S. coastal zones. 
The CZMA creates three national programs: the National 
Coastal Zone Management Program, the National Estuarine 
Research Reserve System, and the Coastal and Estuarine Land 
Conservation Program. These programs provide financial and 
logistical resources to coastal states in their efforts to satisfy 
CZMA-defined goals. 

The Emergency Wetlands Resources Act (EWRA) of 1986 
(1983) provides for the collection of entrance fees, 30% of 
which may be used for refuge operations and maintenance. The 
act also calls on the secretary of the interior to establish and peri-
odically review a national wetlands priority conservation plan 
for federal and state wetlands acquisition, complete NWI maps 
for the contiguous United States by September 30, l998, and 
to update the report on wetlands status and trends at 10-year 
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intervals. Section 303 of the EWRA amended the Land and 
Water Conservation Fund (LWCF) to require that each State-
wide Comprehensive Outdoor Recreation Plan specifically 
address wetlands as an important outdoor recreation resource. 
It also requires that the state wetlands plan be developed in 
consultation with the state agency responsible for fish and 
wildlife resources, which in Texas is TPWD. Finally, TPWD 
has used guidelines of the secretary of interior, as authorized by 
the National Wetlands Priority Conservation Plan (NWPCP), 
to evaluate proposed acquisition of lands when using LWCF 
monies. The National Park Service provides approval authority 
to ensure that the expenditure of LWCF funds is guided by the 
Texas Outdoor Recreation Plan (TORP), the TORP Action 
Program, and the state’s LWCF grant project selection process.

The LWCF Act of 1964 (1964), established by the U.S. 
Congress and administered by the National Park Service, ful-
fills a bipartisan commitment to safeguard natural areas, water 
resources, and cultural heritage and to provide recreation oppor-
tunities to all Americans. The fund helps strengthen commu-
nities, preserve history, and protect the national endowment of 
lands and waters. Since its inception, the LWCF has funded $4 
billion worth of projects in every county in the country.

On August 4, 2020, the Great American Outdoors Act 
(GAOA) was signed into law, authorizing $900 million annu-
ally in permanent funding for the LWCF. Prior to GAOA’s 
passage, funding for the LWCF relied on annual congressional 
appropriations. At no cost to taxpayers, the LWCF supports 
increased public access to and protection for federal public 
lands and waters—including national parks, forests, wildlife 
refuges, and recreation areas—and provides matching grants 
to state governments for the acquisition and development of 
public parks and other outdoor recreation sites. Agencies also 
partner with landowners to support voluntary conservation 
activities on private lands.

LWCF monies are provided to state and federal agencies to 
assist in acquiring and developing federal, state, and local gov-
ernment public outdoor recreation areas. 

Federal and State Conservation Programs

USFWS is responsible for preparing the NWPCP, authorized 
by the 1986 EWRA. The NWPCP’s ongoing program provides 
decision-making guidance on acquiring important, scarce, and 
vulnerable wetlands and establishing other non-acquisition 
protection measure priorities. 

Section 301 of the EWRA requires the secretary of the inte-
rior to establish, periodically review, and revise a NWPCP 
that identifies federal and state acquisition priorities for vari-
ous types of wetlands and wetland interests. The NWPCP is 
an ongoing program and continues to provide guidance for 
making decisions regarding wetland acquisition. The NWP-

CP applies only to wetlands that would be acquired by federal 
agencies and states using LWCF appropriations.

The State Wetlands Conservation Plan (SWCP) for state-
owned coastal wetlands was drafted in 1994 and finalized in 
1997 by TPWD and the Texas General Land Office, with assis-
tance from other agencies (Ch. 14.002, Texas Parks and Wild-
life Code). The SWCP includes definitions of 18 specific items/
actions required by current legislation, including a definition 
of the term “wetlands”; a goal of no overall net loss of state-
owned wetlands; an inventory; wetland mitigation policies; a 
requirement of freshwater inflows to estuaries; a navigational 
dredging and disposal plan; education and research regarding 
boating in wetlands; reduction of nonpoint source pollution; 
improved coordination among existing federal and state agen-
cies; a plan to acquire coastal wetlands; and other provisions. 
The plan focuses on voluntary, nonregulatory approaches to 
wetland conservation in Texas by providing financial, techni-
cal, and education incentives to private landowners. 

The Agricultural Conservation Easement Program is a vol-
untary program helping farmers and ranchers preserve their 
agricultural land and restore, protect, and enhance wetlands 
on eligible lands. The program has two easement enrollment 
components: agricultural land easements and wetland reserve 
easements. Under the agricultural land easement component, 
the Natural Resources Conservation Service (NRCS) pro-
vides matching funds to state, tribal, and local governments 
and nongovernmental organizations with farm and ranch land 
protection programs to purchase agricultural land easements. 
Agricultural land easements may be permanent, or the max-
imum duration authorized by state law. Under the wetland 
reserve easement component, NRCS protects wetlands by pur-
chasing directly from landowners a reserved interest in eligible 
land or entering 30-year contracts on acreage owned by Amer-
ican Indian tribes, in each case providing for the restoration, 
enhancement, and protection of wetlands and associated lands. 
Wetland reserve easements may be permanent, 30 years, or the 
maximum duration authorized by state law.

Signed by the United States and Canada in 1986 and by 
Mexico in 1994, the North American Waterfowl Management 
Plan (NAWMP) stands as the fundamental alliance for bird 
conservation in North America and serves as a cornerstone 
upon which numerous other partnerships have been estab-
lished. Waterfowl were then, and are now, the most promi-
nent and economically important group of migratory birds 
in North America. By 1985, an estimated 3.2 million people 
were spending nearly $1 billion annually to hunt waterfowl. 
An additional 18.6 million people spent $2 billion each year 
to observe, photograph, and otherwise appreciate waterfowl.

Abundance estimates of many waterfowl species plummeted 
to record lows in the years leading up to the establishment of 
NAWMP. Recognizing the importance of waterfowl and wet-
lands to North Americans and the need for international coop-
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Figure 3. Administrative geographies of joint ventures in Texas as defined by the North American 
Waterfowl Management Plan.

eration to help in the recovery of a shared resource, the U.S. 
and Canadian governments developed NAWMP as a strategy 
to restore waterfowl populations through habitat protection, 
restoration, and enhancement. 

NAWMP is uniquely enacted in its international scope but 
implementation at the regional level. Its success depends on 
upon the strength of partnerships: “joint ventures,” comprised 
of federal, state, provincial, tribal, and local governments, 
businesses, conservation organizations, and individual citizens. 
Joint ventures develop implementation plans focusing on areas 
of concern within their geographies identified in NAWMP 
(Figure 3).

Partners’ conservation efforts not only advance waterfowl 
conservation but also make substantial contributions toward 
the conservation of all wetland-associated species. There are 21 
joint ventures actively working to implement NAWMP and 
other national/international bird plans in North America. The 
five joint ventures included in this text have a geographic scope 
and mission focused on conservation of important bird habi-
tats, which include wetlands and associated species in Texas.

The Gulf Coast Joint Venture (GCJV) spans the coastal por-
tions of Texas, Louisiana, Mississippi, and Alabama. As one of 
the joint ventures identified in the original NAWMP for its 
role in supporting wintering waterfowl, the GCJV maintains a 
strong focus on waterfowl and wetland conservation. As a con-
tinentally important region for shorebirds and waterbirds, too, 
the Joint Venture’s work is dominated by wetlands. Science is 
focused on habitats that support mostly wetland-dependent 
bird populations, with special attention to the mottled duck, 
a resident species whose western Gulf Coast range is nearly 
coincident with the joint venture boundary.

The Lower Mississippi Valley Joint Venture (LMVJV) is a 
self-directed, nonregulatory, private–state–federal conservation 
partnership that implements the goals and objectives of nation-
al and international bird conservation plans within the Lower 
Mississippi Valley region. The LMVJV focuses on protection, 
restoration, and management of the birds found in the Low-
er Mississippi Valley as well as their habitats. The geographic 
scope of the LMVJV consists of the Mississippi Alluvial Valley 
and the West Gulf Coastal Plain, an area that includes a por-
tion of East Texas.
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The Oaks and Prairies Joint Venture is a regional, self-direct-
ed partnership of government and nongovernmental organiza-
tions, corporations, and individuals that works across admin-
istrative boundaries to deliver science-based bird conservation 
within the Edwards Plateau ecoregion and Oaks and Prairies 
ecoregion. The Playa Lakes Joint Venture is a nonprofit part-
nership of federal and state wildlife agencies, conservation 
groups, private industry, and landowners dedicated to conserv-
ing bird habitats in the Southern Great Plains, including rivers 
and streams, playas, saline lakes, and other wetlands. The Rio 
Grande Joint Venture is a regional, self-directed partnership 
that delivers science-based bird and habitat conservation in the 
Chihuahuan Desert (located in the Trans-Pecos region of Tex-
as and north-central Mexico) and the Tamaulipan brushlands 
(located in South Texas and northeastern Mexico).

The Texas Coastal Management Program (CMP) was autho-
rized by state legislation in 1989, with strengthening amend-
ments in 1991. The Texas General Land Office was charged 
to coordinate and develop a long-term plan for the manage-
ment of uses affecting coastal conservation areas, in coopera-
tion with other state agencies including the Parks and Wildlife 
Department, the Attorney General’s Office, the Texas Natural 
Resources Conservation Commission, the Texas Water Devel-
opment Board, the Texas Department of Transportation, and 
the Railroad Commission of Texas” (Texas Natural Resources 
Code, § 33.052). The CMP directly affects only parts of the 
first tier of 19 counties of the Texas coast. 

The focus of the CMP is to ensure that management of the 
uses of coastal natural resource areas is consistent with the CMP 
goals and policies. The program is organized to take advantage 
of existing authorities within state and local governments for 
an exclusive list of actions that must be consistent with the 
CMP. Consistency of an agency action is to be determined by 
that agency. Specific listed actions above certain thresholds may 
be reviewed by the Coastal Coordination Council with possi-
ble referral back to the action agency. 

The National Estuary Program is a site-based program that 
aims to protect and restore the water quality and ecological 
integrity of estuaries of national significance. Currently, 28 
estuaries located along the Atlantic, Gulf, and Pacific coasts 
and in Puerto Rico are designated as estuaries of national sig-
nificance, including two in Texas. The two estuary programs 
located in Texas are described below.

The Coastal Bend Bays and Estuaries Program (CBBEP) is 
one of 28 estuary programs that fall under EPA’s place-based, 
nonregulatory estuary protection program. The Galveston Bay 
Plan developed by the Galveston Bay Estuary Program advo-
cates for an ecosystem approach to conservation that supports 
the maintenance of natural physical processes (e.g., sediment 
flows) and ensures the existence of an optimal variety and dis-
tribution of habitats. The primary goal of this program is pro-
tecting existing wetlands through acquisition.

The CBBEP provides a regional framework for conserva-
tion action in a 12-county area of Texas known as the Coast-
al Bend. The Coastal Bend includes three of the seven Texas 
estuaries: Aransas, Corpus Christi, and upper Laguna Madre. 
The CBBEP focuses on conservation of open water, submerged 
habitat, emergent wetland, and upland environments critical to 
the preservation of natural resources in the region. The CBBEP 
identifies regional conservation goals and calls for efforts to 
identify the most at-risk habitat types and work with land-
owners and local and state governments to preserve sufficient 
functional acreage of those habitats. It also identifies specific 
conservation tools necessary to attain this goal, including using 
conservation easements, tax abatements, or land acquisition.

To accomplish these goals, CBBEP has developed three sub-
units that manage separate environmental projects. The Land 
Conservation Program works with partners to conserve valu-
able habitats within the Coastal Bend. To date, CBBEP has 
conserved close to 13,000 acres and manages these lands for 
the long-term benefits for both wildlife and people. The Coast-
al Bird Program works to conserve birds along the Texas coast 
through on-the-ground habitat management, research, and 
education and outreach. The Delta Discovery Program aims to 
provide opportunities for classrooms and families to connect 
with nature and plant the seeds of stewardship in individuals 
whose decisions affect Texas estuaries. 

The Midcontinent Shorebird Conservation Initiative (MSCI) 
is a multi-partner effort along interior portions of North and 
South America that implements a strategic conservation frame-
work to support shorebirds throughout their annual life cycle. 
Wetlands in the midcontinent regions in the Americas (North, 
South, and Central), inclusive of Texas, provide wintering, 
migratory, and breeding habitat to more than 16.5 million 
shorebirds (64% of species found in the western hemisphere) 
annually. MSCI facilitates collaboration at the scales necessary 
to conserve migratory shorebirds and their habitats, enhancing 
stakeholder cooperation across 18 countries and 242 institu-
tions. The strategic conservation framework gives partners the 
resources to identify and implement the management and leg-
islation to meet their habitat and population objectives. 

Wetland Loss Mitigation Strategies in Texas

In Texas, wetland/stream mitigation banks were created to 
answer the “No Net Loss” policy passed in a USACE–EPA 
memorandum of agreement in 1989. Mitigation banks are 
located off-site and identified for their potential to replace the 
exact functions and values of a wetland that will be negative-
ly impacted by development activities. The natural resources 
replaced at a bank are quantified as a “credit” and then sold to 
developers to offset environmental impacts. Today, there are 48 
wetland and stream mitigation banks, with an average size of 
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174 acres of permanently protected wetland considered mitiga-
tion for loss due to development (USACE, 2023).

Blue carbon, a term used to describe the carbon stored in oce-
anic and coastal ecosystems, has been a growing area of inter-
est as Texas searches for the most efficient ways to battle cli-
mate change impacts. Given the relatively large carbon storage 
capacity of coastal wetlands, agencies such as TPWD, USFWS, 
and private organizations such as the Texas Coastal Exchange, 
The Nature Conservancy, and BCarbon have increased efforts 
to protect and restore coastal wetlands across both publicly and 
privately held land along the 3,355-mile (5,400-kilometer) 
Texas shoreline. BCarbon and TPWD have recently partnered 
to create the first blue carbon market in Texas that provides 
opportunities for commercial, industrial, and private landown-
ers to participate in a blue carbon credit exchange. The proto-
col has a distinct focus on living shorelines to protect existing 
coastal wetlands for blue credit issuance.

Dozens of wetland restoration and conservation efforts are 
currently in place through resolutions passed by federal and 
state agencies. 

CONCLUSIONS 

Call to Action for Wetland Conservation and 
Management in Texas

Of Texas’ 3,888,003 wetland acres, 389,150 (10%) are pub-
lic (either federally or state managed). The remaining 90% are 
under private ownership and subject to individual stewardship 
and use (USFWS, 2023b). While sound management of public 
lands is important, programs that provide tools and resources to 
private landowners for the purpose of encouraging responsible 
and scientifically informed land stewardship are paramount in 
a state with such extensive private ownership. Existing private 
landowner programs (e.g., Texas Prairie Wetlands Project, Tex-
as Playa Conservation Initiative) administered through TPWD 
have delivered over 400,000 acres of wetland habitat through 
restoration, construction, and repair statewide. Most programs 
available today to Texas landowners are jointly funded by state 
and federal agencies and nongovernmental organizations. Con-
tinued outreach and expanded access to funding for private 
landowners seeking to manage wetlands will likely continue to 
be an important component of successful conservation as Tex-
as wetlands face intensifying threats due to population growth 
and climate change. 

In a national survey conducted by the U.S. Geological 
Survey in 2017, most respondents reported being “very con-
cerned” about the loss of wetland ecosystem services and least 
concerned about hunting opportunities and aesthetic value 
(Wilkins & Miller, 2018). Other polls have identified “avail-
ability of drinking water” as the most important water/wet-

land-related issue to the general (surveyed) public (Nesmith 
et. al., 2016). Among self-identified outdoor recreationalists, 
however, priorities differ slightly. Respondents to the same 
U.S. Geological Survey 2017 survey that identified as hunters 
reported being most concerned about loss of “wildlife habi-
tat” as a wetland ecosystem service. The largest concern among 
both anglers and wildlife viewers was “pollinator habitat.” All 
three recreationist groups still reported “clean water” in the 
top three concerns. Therefore, communication strategies that 
integrate the value of multiple ecosystem services, including a 
wildlife component, may be most productive. However, future 
outreach and education focusing on clean air, clean water, 
and water conservation, rather than hunting and recreational 
opportunities, may resonate with the widest variety of people. 
Evaluating the most effective communication methods may 
also prove beneficial, as most respondents preferred receiving 
their information by reading or accessing online content like 
video and other visual media (Wilkins & Miller, 2018). Addi-
tionally, of the 12,000 public comments received during the 
hearings of Sackett v EPA, a dominant concern was USACE and 
EPA’s role in avoidance and minimization of wetland destruc-
tion and degradation (Hough & Robertson, 2009). An over-
whelming majority of those who submitted public comments 
were in favour of strong federal regulation in U.S. wetlands 
management. While distrust of government remains common 
among some communities, Texas citizens demonstrate support 
for the regulation of shared water and other natural resourc-
es, especially as drought frequency and intensity increases and 
freshwater availability is threatened. 

Attitudes towards climate change tend to be highly politically 
motivated in Texas. A 2019 poll by University of Texas and The 
Texas Tribune reported that two-thirds of Texas registered vot-
ers believe in the concept of climate change, but their urgency 
towards the issue varies considerably (Ramsey, 2019). Among 
those that identified as Democrats, 88% agree that climate 
change is happening, a view shared by 74% of self-identified 
independents and 44% of self-identified Republicans. Another 
poll administered by Climate Nexus and the Yale Program on 
Climate Change Communication reported nearly two-thirds 
(65%) of Texas registered voters support government action to 
address climate change, including more than one-third (36%) 
who strongly support it (Climate Nexus et al., 2019). Govern-
ment action was most strongly supported by citizens residing in 
areas hardest hit by the effects of climate change in recent years. 
Seventy percent of Houston-area voters say their local area has 
been impacted by flooding, compared to almost half (48%) 
of Texas voters overall. More than a quarter of Houston-area 
voters (28%) reported having had to leave their home at least 
temporarily because of extreme weather. Successful strategies to 
combat climate change may involve increased research through 
reliable funding aimed at mitigation technologies with close 
cooperation between governmental agencies and the public to 
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ensure legislative and regulatory action is representative of the 
concerns of the citizens of Texas. 

Under the provisions of the EWRA, USFWS is required to 
assess and report on the status and trends of the nation’s wet-
land resources at 10-year intervals, with the most recent report 
published in 2011: Status and Trends of Wetlands in the Con-
terminous United States 2004 to 2009. This series of reports 
is intended to help guide decisions by providing resource pro-
fessionals and policy makers information on wetlands-related 
issues, such as the need for potential changes to incentive and 
disincentive policies, measures to conserve wetlands, funding 
priorities for wetlands protection, restoration and enhance-
ment, and landscape-scale planning to address emerging issues 
that could negatively affect wetlands. The 2011 report mea-
sured trends by examining remotely sensed imagery for 5,042 
randomly selected sample plots located throughout the conter-
minous United States. This imagery, in combination with field 
verification, provided a scientific basis for analysis of the extent 
of wetlands and changes that had occurred over the 4.5-year 
time span of the study.

In 2017, TPWD—in cooperation with private, state, and 
federal partners—produced a new 398-class, 10-meter spatial 
resolution land classification map for Texas to support state-
wide evaluation of wetlands and other vegetation commu-
nities. This was accomplished by attributing land cover and 
abiotic variables to 10-meter resolution image objects generat-
ed from the National Agriculture Imagery Program and then 
executing expert rules in the form of: land cover + abiotic vari-
ables = mapped type. In some regions, enhanced satellite land 
cover classification, landform modeling efforts, or other ancil-
lary data were included to map important current vegetation 
types. More than 14,000 ground data samples were collected 
in support of the mapping effort, the largest effort of its kind 
in Texas. Significant overall improvements over existing maps 
included better spatial and thematic resolution as well as the 
mapping of many live oak types statewide, evergreen versus 
deciduous shrublands in appropriate regions, a wide variety of 
disturbance types, and types over unique soils (e.g., salty, deep 
sand, gyp-influenced). The vegetation database resulted in an 
accuracy of 74–90%. These products are used by a wide variety 
of partners in Texas for conservation planning and manage-
ment. Ecologically significant wetlands and other vegetation 
communities are identified based on the habitat preferences of 
fish and wildlife identified by TPWD as species of greatest con-
servation need.

The regularity of these map products has been severely 
restricted by computational capacities (e.g., processing speeds, 
physical memory, storage). Wetlands are dynamic and subject 
to quickly changing land use practices and climatic conditions, 
making timely assessment and mapping crucial to sustainable 
management. Today, new technologies (e.g., cloud comput-
ing) allow for faster processing and the ability to manipulate 

and store big data. A typical image (“tile”) from the Landsat 
8 OLI/TIRS sensor, a commonly used sensor for landcover 
mapping, is 1.6 gigabytes for a coverage of 1.85 million acres. 
A single landcover map of Texas requires 93 tiles, or 149 giga-
bytes, of data. Processing all 7.7 trillion pixels has historically 
taken a significant amount of time, including post-validation 
and accuracy assessments. Cloud computing platforms like 
Google Earth Engine are publicly available geospatial anal-
ysis platforms capable of processing raw imagery, producing 
remotely-sensed products, and executing complex classification 
algorithms entirely in the cloud. The Google Earth Engine data 
catalog contains over 80 petabytes of geospatial data instantly 
available for analysis, expanding access to diverse data and dras-
tically reducing processing and memory requirements. Cloud 
computing is now being used to automate map generation and 
update products yearly, monthly, and even daily (Amani et. al., 
2020; Pan et. al., 2022; Pericak et. al., 2018). Future mapping, 
monitoring, and assessment of wetlands in Texas that capitaliz-
es on advancing technologies would inevitably provide greater 
inferences for conservation and management.

Texas wetlands face intensifying challenges in the coming 
decades. Wetland systems not only underpin economic stabili-
ty and uphold societal values but also play a significant role in 
storing GHGs and mitigating the effects of climate change. As 
Texas experiences rapid population growth, it is imperative to 
promptly address wetland loss and degradation to effectively 
mitigate the consequences of a shifting climate. Forward-fac-
ing regulatory and legislative actions that anticipate the cur-
rent and projected effects of climate change, sea level rise, and 
urban expansion will likely aid in confronting ongoing and 
complex challenges. To this end, new and continued funding 
streams may help facilitate improved or novel infrastructure 
that protect coastal wetlands, their ecosystem processes, and 
the people that reside there. Incorporation of new technologies 
will allow for timely and cost-efficient large-scale monitoring 
of wetland loss and gain. Capturing the dynamic nature of wet-
lands is essential for the development and implementation of 
scientifically informed management, particularly in the wake 
of extreme weather events. The residents of Texas are largely 
in support of active management of the state’s water resourc-
es, and we envision that the success of conservation initiatives 
will be strengthened when academic institutions, state and fed-
eral agencies, and conservation-minded private entities work 
together to ensure that the wetlands of Texas persist for wildlife 
and the generations to come.
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Appendix I
Characteristics and Distribution of Wetlands in Texas

Wetland type Acres
Forested shrub/scrub wetlands1 2,342,957+

Freshwater emergent 1,192,551
Playas2 392,648

Coastal freshwater marsh1 455,701
Other statewide1, 3 529,203++

Tidal or estuarine1 352,495
+ inclusive of riparian zones 
++ inclusive of constructed wetlands and rice fields
1 USFWS, 2023b 
2 Bogaerts, 2019 
3 USDA, 2023

Table 2. Estimated acreage of wetland types in Texas.

PINEYWOODS

The forested and scrub-shrub wetlands of the East Texas bot-
tomland hardwood forests are Texas’ most extensive wetlands 
(Table 2; Dahl & Stedman, 2013; Purvis, 2007). The East 
Texas region is generally geographically defined by the state 
boundary to the east and north, coastally adjacent counties to 
the south, and the Trinity River to the west. These wetlands 
are mainly located in the floodplains of large East Texas riv-
ers (Figure 4). As of 1980, Texas had an estimated 6.1 million 
acres of forested wetlands. Of these, 5.9 million acres were bot-
tomland hardwood forests and 95,000 were open swamps and 
marshes (EPA, 2017). East Texas alone accounts for 71% of the 
state’s forested wetland acres (40% of total wetland acres), with 
the remaining 29% located along riparian corridors across the 
state (Fretwell et al., 1996; USFWS, 2023b). The NWI now 
estimates only 2.3 million acres of forested and shrub-scrub 
wetlands remaining in Texas, a 61% decline in the last four 
decades (USFWS, 2023b). 

Wetlands in East Texas have been extensively diked, cleared, 
and drained to make way for silviculture and other agricultural 
and industrial activities (Aust et al., 2020). While direct land 
conversion is partially responsible for the steep decline in these 
wetlands, hydrological disruption due to urban, suburban, and 
industrial expansion (e.g., oil and gas extraction remains the 

Texas wetlands are diverse and cover vast acreage from the 
367 miles of Gulf of Mexico coastline to the southern fringes 
of the Rocky Mountains system in West Texas. Wetland type 
varies according to soils, geology, and climatic norms and are 
summarized in Table 2.

leading cause of wetland loss in the region (DeFauw, 2020). 
Bottomland hardwood forests and bogs are the result of 
decades, and centuries in some cases, of consistent hydrological 
cycles and are particularly sensitive to uncharacteristic flood-
ing, nutrient loading, and altered flow (Hart & Davis, 2011).

Constructed wetlands, often created to satisfy NWMAP-de-
fined mitigation requirements, attempt to restore or replace 
lost wetlands (USACE et al., 2002). However, these units typ-
ically support lower plant diversity, soil nutrient processing, 
and water quality relative to natural wetlands (Bishel-Machung 
et al., 1996; Craft et al., 1991; Hart & Davis, 2011; Shaffer 
& Ernst, 1999). Increases in runoff due to expanding devel-
opment or redirection of water flow from channelization in 
natural wetlands can substantially disturb historic hydrological 
cycles in these systems, destroying decades or even centuries 
of stabilization necessary for nutrient and GHG sequestration, 
flood and pollution abatement, and wildlife habitat (Conner et 
al., 1981; Hart & Davis, 2011). 

Texas’ forested wetlands can be divided into five main veg-
etative groups according to hydrology and dominant species: 
cottonwood-hackberry-salt cedar brush/woods; pecan-elm for-
est; water oak-elm-hackberry forest; willow oak-water oak-tu-
pelo forest; and bald cypress-water tupelo swamp (Messina & 
Conner, 2019). Bottomland hardwood forest ecosystems pro-
vide habitat for nesting, spawning, rearing, and resting wild-
life. These wetlands also provide irreplaceable storage areas for 
storm and floodwaters, in addition to being natural groundwa-
ter recharge areas (Conner et al., 1981).

Flora and Fauna

Bottomland hardwood and swamp communities in Texas 
support over 180 woody species and 802 herbaceous species 
(Austin College & the Botanical Research Institute of Texas, 
2020; Vines, 1977). Characteristic species in swamps include 
bald cypress (Taxodium distichum), water tupelo (Nyssa aquat-
ica), water hickory (Carya aquatica), water locust (Gleditsia 
aquatica), water tupelo (Nyssa sylvatica), American Sycamore 
(Platanus occidentalis), buttonbush (Cephalanthus occidentalis), 
and swamp privet (Foresteria acuminata). Dominant species 
of bottomland hardwood forests are water oak (Quercus nig-
ra), willow oak (Quercus phellos), water tupelo (Nyssa sylvati-
ca), American elm (Ulmus americana), overcup oak (Quercus 
lyrata), green ash (Fraxinus pennsylvanica), pecan (Carya illi-
noinensis), and possumhaw (Ilex decidua). Periodic inundation 
prevents the establishment of upland species and maintains the 
functioning of these vegetation types. The bottomland hard-
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Figure 4. Distribution and extent of forested and shrub/scrub wetlands in Texas. (USFWS, 2023b). 

wood forests of central East Texas are geologically unique in 
that they contain the Weches Formation, a feature formed 
during the Eocene Epoch (56 to 33.9 million years ago; George 
& Nixon, 1990). The soil that defines this feature, fossiliferous 
glauconite rich sand, supports the only stands of Texas golden 
gladecress (Leavenworthia texana), a federally listed endangered 
species and endemic to this region (George & Nixon, 1990). 
Glauconite soils are currently being investigated as an environ-
ment-friendly, slow-release fertilizer, which could have mean-
ingful implications for future agricultural practices (Rudmin 
et al., 2019).

East Texas bogs, found in association with bottomland hard-
wood forests, occur when bowl-shaped terrain features restrict 
water drainage. These systems are usually wet year-round 
because of continuous groundwater seepage. Acidic conditions 
and poor soil aeration support plant communities containing a 
variety of specialized species, including carnivorous plants such 
as sundews and pitcher plants (members of the Droseraceae 
and Nepenthaceae families, respectively). Other plants include 
red maple (Acer rubrum), wax myrtle (Morella cerifera), alder 
(Alnus spp.), bladderwort (Utricularia spp.), orchid (members 
of the Orchidaceae family), fern (members of the Polypodiop-
sida class), and irises (Iris spp.).
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Freshwater marshes in East Texas support both perennial 
and annual vegetation. Species occupying the fringe or shallow 
areas include several smartweeds (Persicaria spp.), arrow arum 
(Peltandra virginica), spikerushes (Eleocharis spp.), arrowhead 
(Syngonium podophyllum), maidencane (Panicum hemitomon), 
and plumegrass (Saccharum giganteum). These marshes also 
contain extensive stands of cutgrass (Zizaniopsis miliacea) in 
deep areas. Numerous submergent plant species are also found 
in deeper open water pools. Cutgrass marshes are seldom dry. 
Historically, during extreme, infrequent droughts, prolonged 
fires burned the organic peat soils of cutgrass marshes. These 
fires reduced or eliminated the dense herbaceous cover, which 
temporarily favored the growth of many annual plant species. 
Species composition is best maintained by periodic prescribed 
burns to control woody plants (Dickson, 1978; Rudolph & 
Ely, 2000).

Many faunae found in bottomland hardwood forests and 
freshwater marshes of East Texas are wetland-obligate (e.g., 
river otter, Lontra canadensis; American beaver, Castor canaden-
sis; Allen et al., 2001; Coleman et al., 2008; Dickson, 1978). 
These wetlands provide crucial overwintering, migratory, and 
breeding habitat for many waterfowl including wood duck (Aix 
sponsa), mallard (Anas platyrhynchos), northern pintail (Anas 
acuta), green-winged teal (Anas crecca), blue-winged teal (Anas 
discors), scaup (Aythya spp.), gadwall (Mareca strepera), Ameri-
can wigeon (Anas americana), snow goose (Chen caerulescens), 
and Ross’s goose (Chen rossii). Several of these species are con-
sidered highly valuable game animals. Waterfowl hunting in 
Texas generates an estimated $1 billion annually and supports 
over 14,000 jobs across the state (Table 1). Wetlands in East 
Texas also provide habitat for several declining, threatened, and 
endangered species including timber rattlesnake (Crotalus hor-
ridus), alligator snapping turtle (Macrochelys temminckii; fed-
erally proposed threatened), wood stork (Mycteria americana; 
federally endangered, state threatened), red-cockaded wood-
pecker (Picoides borealis; federally endangered), and bald eagle 
(Haliaeetus leucocephalus).

COASTAL PRAIRIES AND MARSHES

Texas coastal wetlands provide foraging habitat for both col-
ony-nesting and overwintering waterbirds. Breeding species 
that nest on barrier islands, coastal bay islands, and the main-
land include the American oystercatcher (Haematopus pallia-
tus), great blue heron (Ardea herodias), great egret (Ardea alba), 
reddish egret (Egretta rufescens), tricolored heron (Egretta tricol-
or), and roseate spoonbill (Platalea ajaja). The location and size 
of these breeding colonies is directly linked to the availability of 
coastal wetlands (Gibbs & Kinkel, 1997), and wetland protec-
tion is critical to the long-term sustainability of colonies (Bates 
et. al., 2016; Gibbs & Kinkel, 1997). 

As of 2023, coastal wetlands comprise 710,300 acres of the 
Texas Gulf Coast (USFWS, 2023b). These wetlands are direct-
ly on the coast, adjacent to estuaries, or in or near tidal reaches 
of large, sluggish coastal rivers (Figure 5). Estuarine wetlands 
such as saltmarshes (emergent) and tidal flats (mostly uncon-
solidated-shore and -bottom) range from brackish to highly 
saline. Of the 710,300 acres of coastal wetlands, 60.8% are 
salt marsh, 38.7% are tidal flats, and 0.41% are forested/scrub-
shrub wetlands (USFWS, 2023b). It is important to note that 
these estimates from the NWI do not include cultivated rice 
fields (extensive along the mid- and upper coast) as they are not 
able to support hydrophytic vegetation in the absence of arti-
ficial pumps (Dahl & Stedman, 2013). However, idle fields in 
rice rotations are often dominated by hydrophytic vegetation, 
regardless of pump operation. Further, idle rice fields have been 
documented as having similar densities of moist-soil seed pro-
duction as units that are intensively managed as such (Marty 
et al., 2015).

Agricultural lands in rice rotation cultivations are unique 
in their characteristics and contributions to coastal wetland 
systems. Systems of low levees, necessary to guide irrigation 
flushing or flooding, provide infrastructure that often passive-
ly captures rainfall or actively manages targeted flooding for 
waterfowl hunting, crawfish production, or other purposes. 
Consequently, flooded rice lands provide some surrogate func-
tions (e.g., waterbird habitat and water quality improvement) 
for the imbedded pothole wetlands they replaced and are an 
important component of the coastal wetland system (Huner et. 
al., 2002; Manley et. al., 2004).

However, the conservation value of flooded rice fields for 
wetland-dependent taxa, particularly birds, is nuanced and 
continues to evolve. 

Flora and Fauna

Wetlands along the Texas Gulf Coast are located at the inter-
face between freshwater and saltwater and are thus subject to 
tides (Lee et al., 2006; Megonigal & Neubauer, 2019). Fluctu-
ating water levels drive cycles of vegetative growth and die-off, 
leading to thick, stratified layers of organic matter. This makes 
these wetlands nutrient-rich environments that support large 
populations of phytoplankton, algae, and biofilm (Megoni-
gal & Neubauer, 2019). Biofilm is a complex community of 
microorganisms that attach to surfaces such as rocks, plants, 
and sediment (Lagos et al., 2016). It provides an important 
source of nutrition for shorebirds, as it contains a variety of 
small organisms that shorebirds can consume (Taft & Haig, 
2005; Wieczorek & Todd, 1998).

Algae are also an important direct food source and can make 
up a significant portion of the diets of many species of shore-
birds, including sandpipers and dunlins (Calidris spp.), plovers 
(Charadrius spp.), and dowitchers (Limnodromus spp.; Miller 
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Figure 5. Distribution and extent of coastal freshwater emergent and tidal/estuarine 
wetlands in Texas (USFWS, 2023b). 

& Ullman, 2004). Algae can form dense mats on the surface of 
water, providing rich feeding grounds that support migrating 
and breeding bird populations (Colwell, 2010; Taft & Haig, 
2005). The availability of biofilms and algae can have a sig-
nificant impact on shorebird populations. Excessive nutrient 
loading (e.g., from storm or agricultural runoff) can lead to an 
increase in algae, which in turn leads to a decline in the abun-
dance of biofilm. Reduced availability of biofilm is known to 
have a negative impact on shorebird populations (Kuwae et al., 
2021). 

Coastal wetlands are continentally important as migration 
and wintering habitat for waterfowl, shorebirds, long-legged 
waders, colonial-nesting waterbirds, and secretive marsh birds. 
Texas coastal wetlands and associated grasslands support a sig-
nificant portion of the world’s population of year-round resident 
mottled ducks (Anas fulvigula). Large concentrations of north-
ern pintail (Anas acuta) and redhead (Aythya americana) rely on 
rice fields and freshwater wetlands on the adjacent mainland as 

winter food sources (Anderson, 1994; Ballard, 2007; Ballard 
et. al., 2021). Waterfowl forage on seeds of annual vegetation 
(e.g., Echinochloa spp., and Persicaria spp.), seeds and leaves 
of submersed aquatic vegetation (e.g., Potamogeton pectinatus, 
Ruppia maritima, and Najas guadalupensis), and below-ground 
parts of many plant species (e.g., Halodule wrightii and Val-
lisneria americana) common in Texas coastal wetlands. Water-
fowl, shorebirds, and many others forage on aquatic micro- 
and macro-invertebrates that are common in coastal wetlands. 
Waterbird species that breed in Texas coastal wetlands often 
do so in emergent aquatic vegetation, subsequently using such 
vegetation as escape cover during brood-rearing.

The largest population of the federally endangered whooping 
crane (Grus americana) spends nearly half its annual cycle in 
coastal wetlands in and around Aransas National Wildlife Ref-
uge (Ritenour et al., 2016). The availability of coastal wetlands 
is thought to be the primary limiting factor to the population 
(Lumb, 2014). Relying on coastal salt marshes, tidal ponds, 
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and upland freshwater ponds, whooping cranes feed mostly 
on blue crabs (Callinectes sapidus), stout razor clams (Tagelus 
plebeius), wolfberry fruit (Lycium virginiana), and crayfish 
(Cambarus hedgpethi; Hunt & Slack, 1989). During periods 
of drought, their use of upland freshwater ponds increases due 
to high salinity along bays and estuaries (Kirkwood & Smith, 
2018). 

Coastal wetlands in Texas provide crucial spawning and 
nursery habitat for several species of fish and shellfish includ-
ing black drum (Pogonias cromis), southern flounder (Para-
lichthys lethostigma), sheepshead (Archosargus probatocephalus), 
red snapper (Lutjanus campechanus), white shrimp (Penaeus 
setiferus), brown shrimp (Penaeus aztecus), blue crab (Callinectes 
sapidus), and eastern oyster (Crassostrea virginica). These species 
help to support a substantial commercial fishery on the Texas 
coast. In 2001, total landings from these fisheries amounted to 
$38.7 billion (Culbertson et al., 2004). Recreational saltwater 
fishing also generates an estimated $1.3 billion annually rely-
ing on aforementioned commercially landed species and others 
including Atlantic croaker (Micropogonias undulatus), spotted 
seatrout, and red drum (Table 1).

Wetlands in this region are often dominated by cordgrasses 
(Spartina spp.), buttonbush (Cephalanthus occidentalis), Ameri-
can water-willow (Justicia americana), swamp milkweed (Ascle-
pias incarnata), Gulf Coast lupine (Lupinus westianus), beach 
morning glory (Ipomoea imperati), and beach evening primrose 
(Oenothera drummondii), among others. These systems were 
historically controlled by fire, maintaining a state of succession 
suitable for the fish and wildlife species adapted to coastal wet-
lands. Suppression of fire to protect residential and industrial 
infrastructure on the coast has led to drastic shifts in vegetative 
assemblages. Increases in perennials and woody species have 
crowded out annuals and herbaceous species crucial for forage 
and refuge for many wildlife species including whooping crane, 
blue crab, brown shrimp, and American alligator (Alligator mis-
sissippiensis; Golden et al., 2022; Joanen & McNease, 1989; 
Pauly & Ingles, 1986). In addition to fire, freshwater inflows 
historically supported this estuarine system, defined as a mix-
ing zone of salt and fresh water. Freshwater inflows have been 
drastically altered across the Texas coast by hydrologic alter-
ations like drainage canals, the Gulf Intracoastal Waterway and 
its associated spoil banks, and over-allocation of many river 
waters for municipal, industrial, and agricultural use. 

HIGH PLAINS

Playas are shallow, circular basins characterized by the pres-
ence of Randall clays and their sole dependence on rainwater 
(Bolen et al., 1989). These features spread across six states, of 
which Texas has the most (23,041 playas) and largest. Texas 
playas range in size from 1 acre to over 800 acres (mean 17 
acres), cover a total of 296,000 acres, and account for 4% 

of Texas’ total wetland acreage (Hoagland & Collins, 1997). 
They are the primary source of recharge (95%) for the Ogallala 
Aquifer, which is one of the largest underground freshwater 
sources in the world and is responsible for 30% of all water 
used for irrigation agriculture in the United States and 82% 
of the drinking water used within the boundaries of the Texas 
High Plains (Dennehy, 2000; USDA, 2011). 

Playa wetlands are unique in that the hydrological cycle 
often includes extended dry periods (Rosen, 1994; Smith et 
al., 2011). Dry periods allow for the Randall clay soils to desic-
cate, causing large fissures in the clay basin and vegetation die-
back. When rainfall returns, water travels along deep fissures 
and pores left by plant roots, reaching the aquifer below at a 
rate 10–10,000 times faster than via the surrounding ground. 
Eventually, the clay soil swells shut, allowing water to pool, 
which provides a vital water source for plants and wildlife in 
an otherwise arid to semiarid landscape. This hydrologic cycle 
makes playas particularly sensitive to changing fire, rainfall, 
and temperature regimes (Adams & Sada, 2014; Salley et al., 
2022). Land use also presents a threat to playas via pits, ditch-
es, road construction, and runoff from row crops. Today, only 
an estimated 4,080 playas in Texas remain functional (17.7%). 
Altered and nonfunctional playas demonstrate significantly 
reduced recharge and increased evaporative water losses rela-
tive to naturally functioning playas (Bolen et al., 1979; Bolen 
et al., 1989). The Ogallala Aquifer has historically been—
and continues to be—pumped at a rate higher than recharge 
(Almas et al., 2004; Hornbeck & Keskin., 2014; Steiner et al., 
2021). In some areas of Texas, the Ogallala Aquifer is now too 
depleted for any groundwater extraction, and those producers 
and municipalities have been forced to move or acquire water 
from elsewhere (Zellmer, 2007). Approximately 98% of the 
playa wetlands in the High Plains of Texas are found on pri-
vate lands, creating challenges for conservation and restoration. 
Though most landowners know what playas are, few under-
stand their function and role in water purification and aquifer 
recharge. Even fewer landowners are interested in conservation 
programs specific to playas due to conflicting agricultural and 
ranching interests.

Flora and Fauna

The flora of playa lakes is as diverse as the playas themselves, 
with the vegetation types influenced by surrounding land use, 
playa modification, and local rainfall patterns (Johnson et al., 
2011). Species characteristic of playas include smartweeds, 
flatspine bur ragweed (Ambrosia a canthicarpa), barnyardgrass 
(Echinochloa crus-galli), blueweed sunflower (Helianthus cili-
aris), buffalograss (Buchloe dactyloides), spikerushes, redshank 
(Persicaria maculosa), western wheatgrass (Agropyron smithii), 
and virginia pepperweed (Lepidium virginicum; Hoagland & 
Collins, 1997). The dramatic fluctuations of water in playas do 
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not permit a Clementsian view of succession, but instead local 
vegetation appears to be the result of current and recent envi-
ronmental conditions, a Gleasonian view (Bolen et al., 1989; 
Johnson et al., 2011). 

Playa wetlands provide essential migratory stopover hab-
itat for waterfowl species such as mallard, gadwall, northern 
pintail, and green-winged teal, blue-winged teal, and sandhill 
crane (Grus canadensis; Anderson & Smith, 1998; Anderson 
et al., 2000; Moon & Haukos, 2006). Approximately 90% 
of overwintering waterfowl in the High Plains inhabit playa 
wetlands (Nelson et al., 1984). It is estimated that as many as 
one-third of the northern pintails in the Central Flyway winter 
in this area, and even more migrate through this region. Esti-
mates from recent (2010–2022) mid-winter surveys suggest 
that 308,000 ducks and 403,000 geese winter in this region 
(TPWD, 2022). These estimates are considerably lower than 
previous decades, due to changes in irrigation practices, playa 
modification, and sedimentation. Wet playas are often the only 
source of freshwater for hundreds of miles due to the episodic 
nature of rainfall and arid climate of this region. Many species 
rely on these oases, including 37 mammal species, including 
pronghorn (Antilocapra americana), white-tailed deer (Odocoil-
eus virginianus), and black-tailed prairie dog (Cynomys ludovi-
cianus); 13 amphibian species, including Great Plains toad 
(Anaxyrus cognatus; federal listing under review), barred tiger 
salamander (Ambystoma mavortium mavortium), and spadefoot 
toads (Scaphiopus spp.); 185 species of birds; and 350 species 
of plants (Gray et al., 2004; Smith, 2003; Smith et al., 2004a).

WEST AND CENTRAL REGIONS

The riparian zone of a river, stream, or other flowing water 
body refers to the land adjacent that is periodically subject to 
flooding. Riparian floodplain areas are transition zones that 
connect rivers, streams, and bayous to the associated upland 
forests, grasslands, and other habitats from which their waters 
flow (Jones-Lewey, 2016; Naiman et al., 2010).

Texas has approximately 191,000 miles of rivers and streams 
(Alldredge et al., 2014), and riparian areas with their associated 
woodlands are considered to be the most widespread wetland 
type in Texas (Haggerty & Meuth, 2015). Due to the vague 
definition of “riparian wetland,” estimates of total acres in Tex-
as are unavailable. The NWI is in the process of mapping ripar-
ian areas but has so far only completed a portion of the Texas 
Panhandle (USFWS, 2023b). However, Swift (1984) attempt-
ed to estimate riparian coverage nationwide using a synthesis 
of available literature, of which many methods included aerial 
imagery and ground surveys. This study estimated riparian cov-
erage of 25–35 million acres as of 1984, a 25–47% loss since 
European settlement. 

Riparian wetlands are often identified by presence of deposi-
tional soils, topographic relief, and vegetation adapted to epi-

sodic inundation. No single definition for “riparian wetland” 
has been universally accepted by relevant federal agencies; thus, 
the diversity within this wetland type is tremendous. Riparian 
zones in Texas are identified by watershed in Figure 6. Riparian 
areas play a vital role in improving water quality by filtering out 
pollutants and sediment from runoff before it reaches larger 
creeks, tributaries, and rivers (Revenga & Kura, 2003). Ripar-
ian wetlands can remove up to 90% of the phosphorus, 50% 
of the nitrogen, and 80% of suspended sediment (among other 
herbicides, pesticides, and heavy metals) from storm and agri-
cultural runoff (Bash & Ryan, 2002; Phillips, 2017; Wu et al., 
2023). A healthy, well-vegetated riparian zone has a diversity 
of native plants of various age classes that help ensure prop-
er function by slowing and infiltrating stormwater, trapping 
and holding sediments, and reducing streambank soil erosion 
and downstream flooding. The increased infiltration recharges 
groundwater and ensures continued spring flow. Shade from 
riparian vegetation reduces daily temperature fluctuations, 
which benefits aquatic and terrestrial animals and decreases 
water loss due to evaporation. Woody debris provides instream 
structure that is used by aquatic organisms for shelter, while leaf 
litter contributes nutrient inputs to the food web (Jones-Lew-
ey, 2016). These wetlands provide essential food, water, and 
shelter for a wide variety of resident plant and animal species, 
as well as providing protected migration routes and stopover 
habitat for a variety of animals.

Flora and Fauna

Plant and wildlife species characteristic of riparian zones vary 
widely by location and watershed. Most plant species found in 
these wetlands are adapted to episodic flooding and frequent 
inundation, including American sycamore (Platanus occiden-
talis), willows (Salix spp.), box elder (Acer negundo), eastern 
cottonwood (Populus deltoides), hackberry (Celtis occidentalis), 
loblolly pine (Pinus taeda), pecan, river birch (Betula nigra), 
iris, cattails (Typha spp.), and spiderwort (Tradescantia spp.). 
As these wetlands are as diverse as they are unique, they pro-
vide habitat to several endemic, threatened, and endangered 
species. Texas wild-rice (Zizania texana) is a federally endan-
gered perennial aquatic grass found only in the spring-fed 
streams of the San Marcos River in Central Texas (Poole, 2008; 
USFSW, 1978). Due to its extreme rarity (in five or fewer pop-
ulations) and limited distribution, Texas wild-rice was one of 
the first plants listed as a critically imperiled species at high risk 
of extinction (USFSW, 1978; Wilson et al., 2017). Efforts to 
restore this species in its natural range through increased pro-
tection measures and supplemental planting have been moder-
ately successful. A recent study demonstrated an exponential 
increase in Texas wild-rice coverage over 30 years, likely due 
to increased protection measures and supplemental planting 
(Poole et al., 2022). 
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The Texas blind salamander (federally endangered) is an 
endemic, cave-dwelling, salamander with distribution limited 
to a few locations in Central and South Texas (Hillis et al., 
2001). This species has adapted to a completely dark envi-
ronment, completing its full life cycle below 58 meters in the 
Edwards Aquifer (Krejca et al., 2007). Being confined to the 
aquifer, the Texas blind salamander is completely reliant on 
groundwater and is continually threatened by nutrient-rich 
runoff, typically filtered by riparian wetlands, and reduced 
recharge (Kuczek & White, 2023; Shockey, 1996). 

The resacas in South Texas also fall under the umbrella of 
riparian wetlands. Resacas (or oxbow lakes) are formed by rem-
nant river bends left by periodic floods and accrete soil from 
repeated flooding (McIntosh & McIntosh, 2014). On the Rio 

Grande and its major tributaries, these wetlands ultimately 
produce rich, biologically diverse systems that support many 
plants, invertebrate, amphibian, fish, and migratory bird spe-
cies in the semiarid environment of South Texas (Jahrsdoerf-
er & Leslie, 1988; McIntosh & McIntosh, 2014; Perez et al., 
2017). Permanent resacas in Cameron County serve as habitat 
for another aquatic salamander, the endemic and threatened 
Rio Grande siren (Siren intermedia texana; LaFortune, 2015). 
Threats to these species are shared among many others found 
in riparian zones across Texas, with decreased volume and qual-
ity of downstream and spring flow being arguably the most 
imminent (Alldredge & Moore, 2014; Duke et al., 2007; Poole 
et al., 2022; Schmidly & Ditton, 1979). 

Figure 6. Representation of the 23 major watersheds in Texas.
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