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Executive Summary 
The US Army Corps of Engineers dredged and permanently reopened Packery Channel, 
historically a natural tidal inlet, to allow water exchange between the Gulf of Mexico and 
the Laguna Madre, Texas.  The main objective of this study was to assess the impact of 
opening this channel on estuarine-dependent recruitment and community structure in 
seagrass habitats adjacent to Packery Channel pre- and post-channel opening.  During 
Phase I of this study we sampled fish and crustacean abundance using an epibenthic sled 
in Halodule wrightii seagrass meadows in both control and impact locations over one-
year before the opening of Packery Channel (October 2004-May 2005) and one-year after 
(July 2005-April 2006).  During Phase II, which is the focus of this report, we continued 
sampling seagrass habitats seasonally from February 2007 – July 2008.  In the first phase 
we found significantly fewer overall nekton abundance post-channel opening.  However, 
we found significantly higher mean densities of newly-settled estuarine-dependent 
species (Sciaenops ocellatus, Micropogonias undulatus, Lagodon rhomboides, 
Callinectes sapidus, and penaeid shrimp) post-opening.  We monitored these same areas 
during 2007 and 2008, and these estuarine-dependent species also occurred at high 
densities post-channel opening.  Multivariate analyses showed significant community 
assemblage changes post-opening for both phases of the study with increased 
contribution of estuarine-dependent species post-opening. Our results show that 
estuarine-dependent nekton are using Packery Channel as a means of ingress into areas of 
the upper Laguna Madre’s seagrass meadows that were previously inaccessible, which 
will translate into higher fisheries productivity for some of these economically and 
ecologically important fishery species such as S. ocellatus, penaeid shrimp, and C. 
sapidus.  Moreover, we found continued high densities of estuarine-dependent species 
over the 2-year study period, possibly resulting in increased fisheries productivity long-
term. 
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Many nekton occurring in coastal waters share a common life history strategy 
characterized by near-shore spawning with larvae migrating through tidal inlets into 
shallow estuarine “nursery” grounds (Weinstein 1979; Baltz et al. 1993; Kneib 1993; 
Minello 1999; Heck et al. 2003).  Therefore, access to high quality habitat in estuarine 
areas via tidal inlets is critical for reproduction, growth, survival, and sustainability of 
these populations.  Access to nursery habitats has both ecological and economic 
implications because as much as 75% of commercially or recreationally important 
species in the Gulf of Mexico are estuarine-dependent (Chambers 1991). 
 
In an effort to restore flow between the Gulf of Mexico and the upper Laguna Madre, TX, 
the United States Army Corps of Engineers (USACE) completed a project in 2005, 
named North Padre Island Storm Damage Reduction and Environmental Restoration 
Project, that permanently reopened the Packery Channel, a historic tidal inlet.  The tidal 
inlet was periodically open until the 1930s, but has since remained closed due to natural 
sedimentation until the completion of the USACE project.  The new inlet is 
approximately 4 m deep and 37 m wide, and extends 5.6 km from the seaward end of the 
jetties to the Gulf Intracoastal Waterway (GIWW) (United States Army Corps of 
Engineers 2003).  Impacts of the new inlet to the upper Laguna Madre were 
mathematically modeled to extend north into Corpus Christi Bay and south towards 
Baffin Bay (United States Army Corps of Engineers 2003).  The USACE (2003) 
predicted that hypersaline conditions in the upper Laguna Madre negative estuarine 
complex would be periodically reduced due to the new connection to the Gulf of Mexico; 
however, overall changes in hydrodynamics were expected to be minimal to the system.  
 
For estuarine-dependent nekton, Packery Channel creates a direct link between the Gulf 
of Mexico and nearby habitats (e.g., primarily seagrass meadows) in the upper Laguna 
Madre.  The new channel is 35 km from the nearest tidal inlet (Aransas Pass), and a new 
means of ingress into the estuarine system may result in higher fisheries productivity, 
since these adjacent nursery habitats were previously inaccessible to nekton recruiting 
from other inlets (Bushon 2006).  The upper Laguna Madre is a highly productive 
hypersaline estuary because of its shallowness (average depth 75 cm) with extensive 
seagrass meadows (Quammen and Onuf 1993).  Submerged aquatic vegetation (SAV) 
supports high nekton abundance and richness because it has high food availability, 
provides sediment stability, refuge from predation, and habitat complexity (Orth et al. 
1984; Quammen and Onuf 1993; Kneib and Wagner 1994).  Therefore, the upper Laguna 
Madre could potentially sustain higher densities of newly recruiting fisheries species, 
support rapid growth rates, and ultimately increase survival of juveniles that may 
subsequently contribute to adult populations (Minello 1999; Beck et al. 2001; Heck et al. 
2003). 
 
A new tidal inlet may influence fishery productivity and impact the nekton community 
structure of the upper Laguna Madre.  Changes in physical (distance from tidal inlets, 
salinity, water depth, etc.) and biotic factors (food abundance, predation, competition, 
and life history traits) have been shown to impact nekton abundance and community 
assemblages (Hoff and Ibara 1977; Weinstein et al. 1980; Rozas and Hackney 1984; 
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Kneib 1993; Levin et al. 1997).  The opening of Packery Channel may cause both 
physical and biological changes.   In particular, variation in seasonal migrations of 
estuarine-dependent species through the new tidal inlet has the potential to influence 
community structure. 
 
Few studies have related estuarine species composition and abundance to the open/closed 
period of tidal inlets along the Texas coast.  Reid (1957) published the only Texas study 
assessing the impact of dredging and reopening a tidal inlet on estuarine organisms by 
examining the impacts of opening Rollover Pass in Galveston Bay, Texas from 1954-
1956.  Reid (1957) suggested that stenohaline marine forms were immigrating into the 
estuary after opening of the inlet due to higher salinity levels.  Simmons and Hoese 
(1959) studied Cedar Bayou Pass in Mesquite Bay, Texas during periods when the inlet 
was open and when it naturally closed due to sedimentation.  They determined that when 
open, it was important to the migration and development of young penaeid shrimp, 
Sciaenops ocellatus, and Paralichthys lethostigma.  More recently, several studies have 
been conducted in southern Australia on intermittently open/closed tidal inlets and their 
impact to nekton densities and assemblages.  Most of these studies have shown that after 
opening a previously closed inlet there are increased densities of estuarine-dependent 
species (Griffiths and West 1999; Griffiths 2001; Jones and West 2005) and nekton 
community changes, which may be attributed to the increase of tidal flow and a closer 
distance to the ocean (Young and Potter 2003). 
 
In 2004 and 2005 we conducted a study (Phase I) determining the immediate impact of 
opening Packery Channel on estuarine-dependent species.  The goal was to determine if 
Packery Channel provides a means of ingress to nursery habitats of the upper Laguna 
Madre that were previously inaccessible for many estuarine-dependent species, such as 
red drum, penaeid shrimp, and blue crabs (Reese et al. 2008).  We also assessed 
differences in community composition post-opening due to seasonal migrations of 
juvenile estuarine-dependent species.  The purpose of this study (Phase II) is to assess the 
impact of Packery Channel on ecologically and economically important nekton several 
consecutive years post-channel opening, and compare our finding to results from Phase I 
of this large project. 
 
Methods 

175 
176 
177 
178 
179 
180 
181 
182 
183 

Study Location 
The Laguna Madre is a bar-built coastal lagoon and one of the largest hypersaline 
systems in the world (Javor 1989).  It extends approximately 200 km south from Corpus 
Christi Bay to the Mexico border (McKee 2008) and is separated into two sub-units (the 
upper Laguna Madre and lower Laguna Madre) by the Land Cut south of Baffin Bay 
(Tunnell et al. 2002).  Salinities in the upper Laguna Madre are typically 40 ppt, but 
historically salinities have reached >100 ppt (Quammen and Onuf 1993).  Seagrass 
meadows (primarily Halodule wrightii) are the predominant habitat type due to its ability 
to tolerate high salinities (Britton and Morton 1989). 
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Figure 1. Study map representing the four sampling locations in the upper Laguna Madre, 
Texas from 2007 – 2008.  
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Delineation of sites and sampling 
We established four sampling locations at varying distances from Packery Channel (Fig. 
1) with  two sampling sites in each location based on Phase I sampling of Packery 
Channel (Reese et al. 2008).  We collected nekton triplicate samples at each location 
using an epibenthic sled.  The epibenthic sled used consists of a metal frame with an 
opening of 0.6 m (length) by 0.75 m (height) with a 1-mm mesh conical plankton net.  It 
was pulled ~17 m, which covers 10 m2 of bottom.  This has been shown as effective gear 
for sampling nekton in seagrass meadows (Stunz et al. 2002).  Samples were collected 
seasonally from February 2007 – July 2008; twice in the winter and fall, and once in the 
spring and summer.  Samples were rough-sorted in the field and pre-served in 10% 
formalin.  In the laboratory, nekton were sorted, identified to lowest possible taxon, 
measured, and preserved in 70% ethanol. Fish were measured to the nearest 0.1 mm (SL) 
and crustaceans were measured to the nearest 0.1 mm total carapace width (CW) for 
crabs or total length (TL) for shrimp. If more than 20 individuals were caught for each 
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species, the largest and smallest and 20 other random individuals were measured. Post-
larval brown shrimp (F. aztecus), pink shrimp (F. duorarum), and white shrimp 
(Litopenaeus setiferus) that were collected at an unidentifiable size range (10 – 18 mm 
TL) were all were grouped into “penaeid shrimp” (Rozas and Minello 1998).   
 
At each of the locations (4 total) water temperature (°C) and dissolved oxygen (ppm) 
were measured using a YSI DO 200 meter.  Salinity (ppt) was measured using a 
refractometer, and water depth was also recorded during each sampling period.  
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Statistical Analysis 
Phase I Analysis 
Data were analyzed with ANOVA using SAS 9.1 in a before-after-control-impact (BACI) 
design to identify nekton density changes due to an environmental change (Stewart-Oaten 
and Murdoch 1986), such as opening Packery Channel.  We used a partially-nested 
hierarchical ANOVA model with before-after (BA) and control-impact (CI) as fixed 
main effects and locations as random effects.   Sampling dates were nested within the 
before and after (BA) treatment, and sampling locations were nested within the control 
and impact (CI) treatment (Keough and Mapstone 1997).   We used the RANDOM 
statement in the general linear model procedure (GLM), which calculates the expected 
mean squares and correct F-values for mixed models with fixed and random effects 
(Montagna and Ritter 2006).  The distribution of the residuals were analyzed using the 
UNIVARIATE procedure and data were transformed (log10 (x+1), ln (x+1), or 4th root) to 
ensure homogeneity of variance and normality of the residuals. 
 
We tested for differences in pre- and post-opening density and abundance of 
economically important estuarine-dependent species during their peak recruitment period 
in the impact locations only. These species were: Sciaenops ocellatus, Lagodon 
rhomboides, Micropogonias undulatus, Callinectes sapidus, and penaeid shrimp (F. 
aztecus, F. duorarum, and L. setiferus).  S. ocellatus mean densities and sizes were 
calculated from fall samples only (Holt et al. 1983).  L. rhomboides mean densities 
(Levin et al. 1997; Patillo et al. 1997) and sizes, as well as M. undulatus mean densities 
(Petrik et al. 1999; Poling and Fuiman 1999; Ditty et al. 2005) and sizes were calculated 
from winter samples.  C. sapidus mean densities and sizes were calculated by combining 
fall, winter, and spring samples (Pile et al. 1996; Blackmon and Eggleston 2001).  
Penaeid shrimp mean densities and sizes were calculated by combining all seasons (Zein-
Eldin and Renaud 1986; Patillo et al. 1997).   
 
Phase II Analysis 
We calculated mean densities (#/m2 ± SE) and size (mm) (mean ± SE) of all nekton 
collected seasonally from 2007 and 2008.  All sampling locations were combined for 
overall mean densities and size by season.  Mean densities were calculated annually from 
a total of 24 samples in the fall and winter, and 12 samples in the spring and summer.  
Mean sizes (standard length for fish, total length for shrimp, and carapace width for 
crabs) were calculated from n number of species measured each year.  Data were not 
collected in the fall 2008, as the project was completed July 2008.  We also calculated the 
relative abundance (RA) seasonally for fishes and crustaceans for 2007. 2008, and overall 
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(2007 and 2008 combined).  The change in relative abundance (RA % Change) was also 
calculated for each species and group of nekton seasonally.  The 2008 RA (%) was 
subtracted from the 2007 RA (%) to calculate the change. 
 
We used a multivariate analysis (PRIMER v.6; Clarke and Gorley 2006) to test for 
significant differences in community assemblages between pre- and post-opening 
samples (Dawson Shepherd et al. 1992; Greenstreet and Hall 1996; Fisher and Frank 
2002).  We examined the mean densities of each species collected by date (24 total) for 
pre- (2004) and post-opening (2005 – 2008).  Data were 4th root transformed prior to 
analysis to reduce the differential effects of dominant species and differentiate between 
pre- and post-opening with having many or few rare species (Clarke and Green 1988).  
Community assemblage between pre- and post-opening was further explored using non-
metric multidimensional scaling (MDS) based on Bray-Curtis similarity with Bray-Curtis 
cluster groups superimposed for interpretation (Clarke and Warwick 2001). 

Results 
264 
265 
266 
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268 
269 
270 
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273 
274 
275 
276 

Physical Parameters 
Water depth ranged from 21 cm (spring 2004 pre-opening) to 40 cm (summer 2008 post-
opening), with some seasonal differences pre- and post-opening.  Dissolved oxygen was 
fairly consistent throughout Phase I and Phase II of the study ranging between 5.08 mg l-1 
and 8.53 mg l-1.  Both salinity and temperature were higher 2005 post-opening over all 
seasons, both peaking during the summer (33.4 ˚C and 40 ppt, respectively).  However, 
temperature was consistent between 2007 and 2008, with slightly lower temperatures 
observed in winter 2008.  Salinity was much higher in summer 2008 (43‰) as compared 
to 2007 (29‰) (Table 1).We did not measure flow nor changes to habitat types, but 
during 2005 post-opening sampling large differences were observed in water movement 
and physical alterations to habitat (i.e., extensive seagrass loss on exposed sand bars) 
most likely a result of more extreme tidal fluctuations. We observed similar tidal 
fluctuations in Phase II, however did not observe any additional seagrass loss.   
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Table 1.  Seasonal mean physical parameters (with standard error, SE) for 2007 and 
2008.  Measurements were not taken in fall 2008 (as indicated by a dash), because 
sampling was complete in summer 2008. 
 

  2007   2008 
Parameter Mean SE n   Mean SE n 
Winter        
Dissolved oxygen (mg/L) 6.16 (0.3) 8  7.67 (0.5) 8 
Water temperature (°C) 20.0 (0.4) 8  15.7 (1.4) 8 
Salinity (‰) 32 (0.2) 8  32 (0.6) 8 
Spring        
Dissolved oxygen (mg/L) 6.57 (0.2) 4  7.47 (0.4) 4 
Water temperature (°C) 24.2 (0.2) 4  25.2 (0.4) 4 
Salinity (‰) 33 (1.2) 4  34 (1.2) 4 
Summer        
Dissolved oxygen (mg/L) 5.08 (0.5) 4  6.87 (0.4) 4 
Water temperature (°C) 30.5 (0.3) 4  29.0 (0.2) 4 
Salinity (‰) 29 (2.2) 4  43 (1.7) 4 
Fall        
Dissolved oxygen (mg/L) 8.53 (0.8) 8  - - - 
Water temperature (°C) 20.6 (1.3) 8  - - - 
Salinity (‰) 27 (0.7) 8   - - - 

282  
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Total Nekton Density 
Phase I 
We examined the overall differences in nekton with the opening of Packery Channel and 
found significantly fewer nekton post-opening in impact locations (mean = 15.88 m-2 ± 
1.37 SE) than pre-opening impact sites (mean = 59.12 m-2 ± SE = 5.69; BA x CI 
interaction F1,567 = 50.81;  p < 0.001) (Table 2, Fig. 2).  Crustaceans dominated nekton 
total catch pre- and post-opening, 95% and 89% respectively.  Palaemonetes sp. 
dominated the crustacean abundance both pre- and post-opening, 83% and 52% 
respectively.  Because of this numerically dominant species, we separated nekton into 
three broad taxonomic categories, fish, crustaceans, and Palaemonetes sp. to determine 
density changes post-opening.  Although there were higher mean densities of fish post-
opening in impact locations (mean = 2.40 m-2 ± 0.26 SE) versus pre-opening (mean = 
1.95 m-2 ± 0.12 SE), there was no significant difference (BA x CI interaction F1,567 = 
1.29; p = 0.2564) (Table 2, Fig. 2).  However, there were significantly fewer crustaceans 
and Palaemonetes sp. (BA x CI interaction F1,567 = 60.00; p < 0.001; F1,567 = 59.63, p < 
0.001, respectively) in impact locations post-opening (mean = 13.48 m-2 ± 1.23 SE; mean 
= 7.71 m-2 ± 1.04 SE, respectively) versus pre-opening (mean = 57.17 m-2 ± 5.64 SE; 
mean = 51.48 m-2 ± 5.58 SE, respectively) (Table 2, Fig. 2). 
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Table 2.  Analysis of Variance nested model (overall, fish, crustacean, and grass shrimp) 
for Phase I (2004 – 2005) of Packery Channel project, with date as a nested factor within 
the before and after (BA) treatment and sampling locations as a nested factor within the 
control and impact (CI) treatment.   
 

SUM OF MEAN
SOURCE df SQUARES SQUARE F VALUE P VALUE

OVERALL
BA 1 16.963 16.963 135.650 <0.001
Date (BA) 12 16.504 1.375 11.000 <0.001
CI 1 0.856 0.856 6.850 0.0090
Location (CI) 5 9.001 1.800 14.400 <0.001
BA x CI 1 6.353 6.353 50.810 <0.001
Error 567 70.900 0.125

FISH
BA 1 0.858 0.858 3.240 0.0722
Date (BA) 12 23.863 1.987 7.510 <0.001
CI 1 1.782 1.782 6.730 0.0097
Location (CI) 5 37.627 7.525 28.440 <0.001
BA x CI 1 0.342 0.342 1.290 0.2564
Error 567 150.030 0.265

CRUSTACEANS
BA 1 103.712 103.712 152.910 <0.001
Date (BA) 12 90.292 7.524 11.090 <0.001
CI 1 4.205 4.205 6.200 0.0131
Location (CI) 5 45.250 9.050 13.340 <0.001
BA x CI 1 40.697 40.697 60.000 <0.001
Error 567 384.571 0.678

GRASS SHRIMP
BA 1 82.318 82.318 271.190 <0.001
Date (BA) 12 73.699 6.142 20.230 <0.001
CI 1 1.338 1.338 4.410 0.0362
Location (CI) 5 2.070 6.414 21.130 <0.001
BA x CI 1 18.099 18.099 9.630 <0.001
Error 567 172.106 0.304  308 
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Figure 2. Overall mean density (m-2) of nekton, fish, crustaceans, and Palaemonetes sp. 
in control and impact locations over all seasons pre- and post-opening 2004-2005. 
Before-after-control-impact ANOVA model was used to test each group; * p < 0.05, ** p 
< 0.01, *** p < 0.001. 
 
Phase II 
We collected a total of 2,528 individual fishes representing 26 species from 16 families, 
and 28,229 individual crustaceans representing at least 6 species during 2007 post-
opening sampling of Packery Channel between February and November 2007.  During 
2008 sampling of Packery Channel we collected a total of 2,511 individual fishes 
representing at least 29 species with 17 families, and 10,688 individual crustaceans 
representing 7 species between February and July 2008.  For some taxa, juveniles were 
only identified to family.  Samples were examined seasonally because we found seasonal 
differences in nekton composition and density in locations adjacent to Packery Channel, 
and mean density, size, total catch, and relative abundance (RA%) were calculated for 
each species or family (Table 3).  Habitats adjacent to Packery Channel supported high 
abundances of Gobionellus boleosoma, Lagodon rhomboides, and Micropogonias 
undulatus during winter 2007 (27.5%, 49.6%, and 9.5% respectively), with very little 
change observed in 2008.  We also found similar abundances of L. rhomboides and G. 
boleosoma during both the spring and summer seasons in 2007 and 2008.  However, 
densities of Eucinostomus argenteus greatly increased in summer 2008 as compared to 
2007.  During the only fall season we sampled in 2007, we found that G. boleosoma, 
Sciaenops ocellatus, and Syngnathus sp. were the most abundant fishes.   Palaemonetes 
sp. were the most abundant crustaceans over all seasons during both 2007 and 2008 
sampling, with at least 68.5% relative abundance (Table 3). 
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Table 3. Mean densities (#/m2; SE = Standard Error) and mean size (mm) of all nekton collected seasonally from 2007 and 2008.  
Data were not collected in fall 2008.  The relative abundance (RA) is listed seasonally for fishes and crustaceans for 2007, 2008, and 
overall (2007 and 2008 combined).  The change in relative abundance (RA % Change) was also calculated for each species and group 
of nekton seasonally.  A negative value shows a decline in abundance, and a positive number indicated an increase in abundance. 

Species

Mean 
Density 
(#/m2) SE

Mean 
Size 

(mm) SE
Total 
Catch RA (%)

Mean 
Density 
(#/m2) SE

Mean 
Size 

(mm) SE
Total 
Catch RA (%)

Overall 
Total 
Catch

Overall 
RA (%)

RA % 
Change

Winter
FISHES
Total Fishes 3.53 (0.42) 832 2.15 (0.49) 511 1343
Brevoortia patronus 0.00 (0.00) 12.8 (0.0) 1 0.1 0.00 (0.00) 10.3 (0.0) 1 0.2 2 0.1 0.1
Citharichthys spilopterus 0.01 (0.01) 11.3 (0.1) 3 0.4 0.05 (0.02) 10.9 (0.8) 11 2.2 14 1.0 1.8
Cyprinodon variegatus 0.04 (0.02) 25.9 (1.2) 10 1.2 0.03 (0.02) 33.6 (1.6) 8 1.6 18 1.3 0.4
Fundulus grandis 0.00 (0.00) 18.5 (0.0) 1 0.1 0.00 (0.00) 51.9 (0.0) 1 0.2 2 0.1 0.1
Gobiidae 0.14 (0.06) 9.5 (0.1) 33 4.0 0.17 (0.05) 9.3 (0.1) 40 7.8 73 5.4 3.9
Gobionellus boleosoma 0.95 (0.23) 18.5 (0.5) 229 27.5 0.73 (0.20) 17.1 (0.6) 174 34.1 403 30.0 6.5
Gobiosoma bosc 0.00 (0.00) 0.0 (0.0) 0 0.0 0.00 (0.00) 23.5 (0.0) 1 0.2 1 0.1 0.2
Gobiosoma robustum 0.03 (0.02) 16.1 (1.6) 6 0.7 0.05 (0.03) 16.2 (2.0) 13 2.5 19 1.4 1.8
Hippocampus zosterae 0.01 (0.01) 22.9 (2.0) 2 0.2 0.01 (0.01) 25.4 (1.1) 2 0.4 4 0.3 0.2
Lagodon rhomboides 1.72 (0.25) 16.1 (0.2) 413 49.6 0.68 (0.26) 16.4 (0.7) 164 32.1 577 43.0 -17.5
Leiostomus xanthurus 0.00 (0.00) 0.0 (0.0) 0 0.0 0.00 (0.00) 26.9 (0.0) 1 0.2 1 0.1 0.2
Lucania parva 0.03 (0.02) 16.5 (1.7) 8 1.0 0.00 (0.00) 0.0 (0.0) 0 0.0 8 0.6 -1.0
Menidia menidia 0.00 (0.00) 0.0 (0.0) 0 0.0 0.05 (0.04) 16.9 (0.8) 13 2.5 13 1.0 2.5
Menticirrhus littoralis 0.00 (0.00) 0.0 (0.0) 0 0.0 0.00 (0.00) 3.1 (0.0) 1 0.2 1 0.1 0.2
Micropogonias undulatus 0.39 (0.12) 15.6 (0.5) 79 9.5 0.23 (0.07) 14.6 (0.9) 48 9.4 127 9.5 -0.1
Mugil cephalus 0.02 (0.02) 23.0 (0.2) 5 0.6 0.00 (0.00) 25.0 (0.0) 1 0.2 6 0.4 -0.4
Paralichthys lethostigma 0.01 (0.01) 16.2 (0.9) 2 0.2 0.02 (0.01) 12.3 (2.6) 4 0.8 6 0.4 0.5
Pogonias cromis 0.00 (0.00) 0.0 (0.0) 0 0.0 0.00 (0.00) 28.5 (0.0) 1 0.2 1 0.1 0.2
Prionotus rubio 0.00 (0.00) 0.0 (0.0) 0 0.0 0.00 (0.00) 44.4 (0.0) 1 0.2 1 0.1 0.2
Symphurus plagiusa 0.00 (0.00) 0.0 (0.0) 0 0.0 0.01 (0.01) 28.4 (12.5) 2 0.4 2 0.1 0.4
Symphurus sp. 0.00 (0.00) 52.6 (0.0) 1 0.1 0.00 (0.00) 8.8 (0.0) 1 0.2 2 0.1 0.1
Syngnathus  sp. 0.16 (0.04) 63.4 (3.5) 39 4.7 0.10 (0.04) 74.6 (3.9) 23 4.5 62 4.6 -0.2

CRUSTACEANS
Total Crustaceans 43.82 (11.98) 10517 11.14 (1.67) 2671 13188
Callinectes sapidus 3.73 (1.02) 7.6 (0.3) 894 8.5 1.91 (0.73) 8.3 (0.5) 458 17.1 1352 10.3 8.6
Farfantepenaeus sp. 0.11 (0.04) 20.4 (1.7) 26 0.2 1.21 (0.38) 26.7 (1.3) 291 10.9 317 2.4 10.6
Litopenaeus setiferus 0.11 (0.08) 15.6 (1.4) 27 0.3 0.03 (0.03) 24.7 (3.5) 6 0.2 33 0.3 0.0
Palaemonetes  sp. 32.83 (12.38) 14.3 (0.2) 7878 74.9 4.79 (1.33) 14.6 (0.3) 1150 43.1 9028 68.5 -31.9
Penaeid Shrimp 5.13 (0.78) 12.5 (0.2) 1230 11.7 2.30 (0.74) 12.8 (0.3) 552 20.7 1782 13.5 9.0

2007 2008

Tozeuma  sp. 0.39 (0.16) 25.2 (0.4) 94 0.9 0.58 (0.34) 33.4 (4.8) 140 5.2 234 1.8 4.3
Xanthidae 1.53 (0.32) 4.7 (0.2) 368 3.5 0.31 (0.08) 4.3 (0.3) 74 2.8 442 3.4 -0.7  341 
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Table 3 continued. 

Species

Mean 
Density 
(#/m2) SE

Mean 
Size 

(mm) SE
Total 
Catch RA (%)

Mean 
Density 
(#/m2) SE

Mean 
Size 

(mm) SE
Total 
Catch RA (%)

Overall 
Total 
Catch

Overall 
RA (%)

RA % 
Change

Spring
FISHES
Total Fishes 7.14 (1.57) 857 12.86 (5.79) 1541 2398
Bairdiella chrysoura 0.00 (0.00) 0.0 (0.0) 0 0.0 0.05 (0.04) 13.4 (2.2) 6 0.4 6 0.3 0.4
Cynoscion nebulosus 0.01 (0.01) 11.8 (0.0) 1 0.1 0.00 (0.00) 0.0 (0.0) 0 0.0 1 0.0 -0.1
Eucinostomus argenteus 0.00 (0.00) 0.0 (0.0) 0 0.0 0.17 (0.17) 11.5 (0.2) 20 1.3 20 0.8 1.3
Gobiidae 0.08 (0.04) 9.0 (0.2) 10 1.2 0.06 (0.03) 8.8 (0.3) 7 0.5 17 0.7 -0.7
Gobionellus boleosoma 2.12 (0.58) 19.6 (0.5) 254 29.6 1.88 (0.45) 18.1 (0.5) 225 14.6 479 20.0 -15.0
Gobiosoma robustum 0.14 (0.06) 21.0 (1.1) 17 2.0 0.03 (0.03) 12.5 (0.5) 4 0.3 21 0.9 -1.7
Hippocampus erectus 0.00 (0.00) 0.0 (0.0) 0 0.0 0.01 (0.01) 12.0 (0.0) 1 0.1 1 0.0 0.1
Hippocampus zosterae 0.00 (0.00) 0.0 (0.0) 0 0.0 0.02 (0.01) 11.6 (3.5) 2 0.1 2 0.1 0.1
Lagodon rhomboides 4.53 (1.08) 18.5 (0.4) 543 63.4 10.34 (5.33) 16.9 (0.5) 1241 80.5 1784 74.4 17.2
Leiostomus xanthurus 0.03 (0.01) 46.2 (3.7) 3 0.4 0.00 (0.00) 0.0 (0.0) 0 0.0 3 0.1 -0.4
Lucania parva 0.03 (0.02) 20.0 (1.2) 3 0.4 0.00 (0.00) 0.0 (0.0) 0 0.0 3 0.1 -0.4
Menidia menidia 0.01 (0.01) 9.9 (0.0) 1 0.1 0.00 (0.00) 0.0 (0.0) 0 0.0 1 0.0 -0.1
Micropogonias undulatus 0.01 (0.01) 33.6 (0.0) 1 0.1 0.01 (0.01) 37.1 (0.0) 1 0.1 2 0.1 -0.1
Ophichthus gomesii 0.01 (0.01) 95.2 (0.0) 1 0.1 0.00 (0.00) 0.0 (0.0) 0 0.0 1 0.0 -0.1
Orthopristis chrysoptera 0.01 (0.01) 21.2 (0.0) 1 0.1 0.13 (0.07) 13.1 (1.0) 16 1.0 17 0.7 0.9
Paralichthys lethostigma 0.00 (0.00) 0.0 (0.0) 0 0.0 0.01 (0.01) 33.0 (0.0) 1 0.1 1 0.0 0.1
Stellifer lanceolatus 0.00 (0.00) 0.0 (0.0) 0 0.0 0.03 (0.03) 7.3 (0.9) 4 0.3 4 0.2 0.3
Syngnathus sp. 0.18 (0.05) 65.7 (4.8) 22 2.6 0.11 (0.04) 52.9 (7.9) 13 0.8 35 1.5 -1.7

CRUSTACEANS
Total Crustaceans 55.47 (11.52) 6656 32.21 (9.04) 3859 10515
Callinectes sapidus 0.34 (0.11) 14.0 (1.7) 41 0.6 0.30 (0.14) 6.3 (1.1) 36 0.9 77 0.7 0.3
Farfantepenaeus  sp. 1.70 (0.46) 31.1 (1.2) 204 3.1 4.19 (1.37) 26.4 (1.2) 503 13.0 707 6.7 10.0
Litopenaeus setiferus 0.53 (0.47) 21.8 (1.5) 64 1.0 0.14 (0.14) 24.1 (2.0) 17 0.4 81 0.8 -0.5
Ogyrides  sp. 0.00 (0.00) 0.0 (0.0) 0 0.0 0.01 (0.01) 9.4 (0.0) 1 0.0 1 0.0 0.0
Palaemonetes  sp. 45.73 (10.48) 13.1 (0.3) 5487 82.4 25.16 (8.49) 13.3 (0.5) 3019 78.2 8506 80.9 -4.2
Penaeid Shrimp 5.88 (1.05) 14.2 (0.4) 706 10.6 1.03 (0.47) 15.6 (1.5) 123 3.2 829 7.9 -7.4
Tozeuma  sp. 0.82 (0.37) 21.8 (1.0) 98 1.5 0.62 (0.16) 13.5 (0.5) 74 1.9 172 1.6 0.4
Xanthidae 0.47 (0.13) 4.6 (0.5) 56 0.8 0.72 (0.58) 3.5 (0.4) 86 2.2 142 1.4 1.4

2007 2008
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Table 3 continued. 

Species

Mean 
Density 
(#/m2) SE

Mean 
Size 

(mm) SE
Total 
Catch RA (%)

Mean 
Density 
(#/m2) SE

Mean 
Size 

(mm) SE
Total 
Catch RA (%)

Overall 
Total 
Catch

Overall 
RA (%)

RA % 
Change

Summer
FISHES
Total Fishes 3.04 (0.49) 364 3.78 (1.10) 450 814
Bairdiella chrysoura 0.00 (0.00) 0.0 (0.0) 0 0.0 0.01 (0.01) 6.5 (0.0) 1 0.2 1 0.1 0.2
Cynoscion nebulosus 0.02 (0.02) 6.7 (0.7) 2 0.5 0.03 (0.01) 12.6 (3.3) 3 0.7 5 0.6 0.1
Dormitator maculatus 0.00 (0.00) 0.0 (0.0) 0 0.0 0.01 (0.01) 20.1 (0.0) 1 0.2 1 0.1 0.2
Eucinostomus argenteus 0.27 (0.15) 9.3 (0.5) 31 8.5 0.88 (0.45) 10.4 (0.4) 103 22.9 134 16.5 14.4
Evorthodus lyricus 0.01 (0.01) 32.8 (0.0) 1 0.3 0.00 (0.00) 0.0 (0.0) 0 0.0 1 0.1 -0.3
Gobionellus boleosoma 1.09 (0.41) 20.1 (0.8) 131 36.0 1.46 (0.60) 21.6 (0.7) 175 38.9 306 37.6 2.9
Gobiosoma bosc 0.02 (0.02) 34.9 (0.3) 2 0.5 0.00 (0.00) 0.0 (0.0) 0 0.0 2 0.2 -0.5
Gobiosoma robustum 0.23 (0.09) 28.1 (1.3) 27 7.4 0.37 (0.19) 25.9 (0.7) 44 9.8 71 8.7 2.4
Hippocampus zosterae 0.00 (0.00) 0.0 (0.0) 0 0.0 0.02 (0.01) 13.4 (2.1) 2 0.4 2 0.2 0.4
Lagodon rhomboides 1.13 (0.32) 31.5 (0.6) 136 37.4 0.66 (0.15) 89.0 (59.6) 79 17.6 215 26.4 -19.8
Lutjanus griseus 0.00 (0.00) 0.0 (0.0) 0 0.0 0.03 (0.02) 35.8 (13.2) 3 0.7 3 0.4 0.7
Menidia menidia 0.01 (0.01) 9.8 (0.0) 1 0.3 0.00 (0.00) 0.0 (0.0) 0 0.0 1 0.1 -0.3
Ophichthus gomesii 0.00 (0.00) 0.0 (0.0) 0 0.0 0.01 (0.01) 148.0 (0.0) 1 0.2 1 0.1 0.2
Scorpaena plumieri  0.00 (0.00) 0.0 (0.0) 0 0.0 0.01 (0.01) 30.6 (0.0) 1 0.2 1 0.1 0.2
Symphurus plagiusa 0.00 (0.00) 0.0 (0.0) 0 0.0 0.02 (0.02) 20.6 (0.4) 2 0.4 2 0.2 0.4
Syngnathus  sp. 0.28 (0.07) 57.4 (6.1) 33 9.1 0.29 (0.09) 55.1 (6.3) 35 7.8 68 8.4 -1.3

CRUSTACEANS
Total Crustaceans 13.66 (3.87) 1639 34.66 (15.80) 4158 5797
Callinectes sapidus 0.07 (0.05) 10.9 (3.7) 8 0.5 0.02 (0.02) 2.8 (1.0) 2 0.0 10 0.2 -0.4
Farfantepenaeus  sp. 0.70 (0.15) 40.1 (1.9) 84 5.1 0.36 (0.13) 46.1 (1.9) 43 1.0 127 2.2 -4.1
Litopenaeus setiferus 0.00 (0.00) 0.0 (0.0) 0 0.0 0.22 (0.20) 12.3 (1.0) 26 0.6 26 0.4 0.6
Palaemonetes  sp. 10.55 (2.90) 17.9 (0.4) 1266 77.2 27.75 (14.32) 15.4 (0.5) 3330 80.1 4596 79.3 2.8
Penaeid Shrimp 1.03 (0.43) 10.0 (0.3) 123 7.5 1.06 (0.28) 10.4 (0.4) 127 3.1 250 4.3 -4.5
Tozeuma  sp. 1.16 (0.84) 29.8 (1.0) 139 8.5 5.17 (1.94) 20.2 (0.7) 620 14.9 759 13.1 6.4
Xanthidae 0.16 (0.11) 5.6 (0.9) 19 1.2 0.08 (0.07) 5.3 (0.7) 10 0.2 29 0.5 -0.9

2007 2008
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Table 3 continued. 
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Species

Mean 
Density 
(#/m2) SE

Mean 
Size 

(mm) SE
Total 
Catch RA (%)

Mean 
Density 
(#/m2) SE

Mean 
Size SE

Total 
Catch RA (%)

Overall 
Total 
Catch

Overall 
RA (%)

RA % 
Change

Fall
FISHES
Total Fishes 1.91 (0.26) 459
Citharichthys spilopterus 0.01 (0.01) 13.2 (2.9) 3 0.7
Cyprinodon variegatus 0.03 (0.02) 29.8 (3.7) 7 1.5
Eucinostomus argenteus 0.09 (0.03) 23.2 (3.0) 22 4.8
Gobiidae 0.08 (0.04) 9.5 (0.2) 19 4.1
Gobionellus boleosoma 0.91 (0.24) 18.9 (0.6) 219 47.7
Gobiosoma robustum 0.03 (0.01) 15.9 (1.2) 6 1.3
Hippocampus zosterae 0.00 (0.00) 25.0 (0.0) 1 0.2
Lagodon rhomboides 0.14 (0.04) 42.5 (2.2) 34 7.4
Lutjanus griseus 0.00 (0.00) 30.9 (0.0) 1 0.2
Micropogonias undulatus 0.01 (0.01) 16.3 (4.1) 3 0.7
Ophichthus gomesii 0.00 (0.00) 121.2 (0.0) 1 0.2
Prionotus rubio 0.00 (0.00) 11.5 (0.0) 1 0.2
Sciaenops ocellatus 0.28 (0.05) 8.3 (0.2) 66 14.4
Symphurus civitatium 0.00 (0.00) 12.1 (0.0) 1 0.2
Symphurus plagiusa 0.02 (0.02) 14.0 (4.2) 5 1.1
Symphurus sp. 0.00 (0.00) 21.8 (0.0) 1 0.2
Syngnathus  sp. 0.29 (0.07) 39.6 (4.1) 69 15.0

CRUSTACEANS
Total Crustaceans 39.29 (5.20) 9417
Callinectes sapidus 0.48 (0.23) 6.9 (0.9) 114 1.2
Farfantepenaeus sp. 1.17 (0.43) 34.5 (1.0) 280 3.0
Litopenaeus setiferus 0.03 (0.02) 27.7 (2.6) 7 0.1
Palaemonetes  sp. 34.02 (5.03) 12.4 (0.2) 8165 86.7
Penaeid Shrimp 0.83 (0.27) 9.6 (0.3) 198 2.1
Tozeuma  sp. 2.45 (0.79) 21.2 (0.5) 588 6.2
Xanthidae 0.27 (0.10) 3.2 (0.3) 65 0.7

2007 2008
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Selected Fishes and Crustaceans 
Phase I 
In general, we found higher densities of estuarine-dependent species with the opening of 
Packery Channel.  Several estuarine-dependent species that had recently settled into the 
seagrass meadows from their planktonic phase had significantly higher mean densities 
post-opening.  Specifically, we found significantly higher densities of newly-settled S. 
ocellatus (p < 0.01; t = -3.55; df = 94), L. rhomboides (p = 0.005; t = -2.85; df = 94), M. 
undulatus (p < 0.001; t = -3.90; df = 94), C. sapidus (p < 0.001; t = -5.01; df  = 286) and 
penaeid shrimp (p < 0.001; t = -4.83; df = 334) in the impact locations (Table 4, Fig. 3).  
Of the identifiable penaeid shrimp, F. aztecus were the predominant species.    
 
In addition to the increase of individuals to locations adjacent to Packery Channel, we 
also observed distinct size differences for all size classes of estuarine-dependent species, 
with the general pattern of significantly smaller individuals post-opening in 2005.  All of 
the estuarine-dependent species analyzed were significantly smaller post-opening: S. 
ocellatus (p < 0.001; t = 6.71; df = 26), L. rhomboides (p < 0.001; t = 15.49; df = 497), M. 
undulatus (p < 0.001; t = 5.62; df = 247), C. sapidus (p < 0.001; t = 14.90; df = 1053), 
and penaeid shrimp (p < 0.001; t = 10.23; df = 6201) (Table 4, Fig. 4).  
 
Phase II 
We found continued high densities of estuarine-dependent species in locations near the 
opening of Packery Channel.  Sciaenops ocellatus had a nearly ten-fold increase in 
density from 2005 (0.03 m-2 ± 0.01) to 2007 (0.28 ± 0.05), and blue crabs had an even 
larger increase in density in both 2008 and 2007 (Table 4).  Penaeid shrimp and M. 
undulatus densities were similar to the initial 2005 post-opening densities, but are still 
much greater than pre-opening (Table 4, Fig. 4).  We also observed similar size patterns 
to Phase I sampling, with smaller individuals post-opening in 2007 and 2008.  All of the 
species from Phase II were smaller than pre-opening, with the only exception being M. 
undulatus.  This could be due to a longer recruitment season (November – February), so 
there was a greater mix of large and small individuals.  (Table 4, Fig. 5).  
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Table 4. Mean densities (#/m-2) and mean size (mm) of selected fishes and crustaceans 
(SE = Standard Error) for 2004 pre-opening and all post-opening sampling are 
summarized below.  The mean densities of the species selected were calculated during 
their recruitment seasons.   

Species Mean S.E. n Mean S.E. n Mean S.E. n Mean S.E. n
Density
Sciaenops ocellatus 0.00 0.00 48 0.03 0.01 48 0.28 (0.05) 24 - - -
Lagodon rhomboides 0.23 0.05 48 1.11 0.31 48 1.72 (0.25) 24 0.68 (0.26) 24
Micropogonias undulatus 0 0 48 0.415 0.12 48 0.39 (0.12) 24 0.23 (0.07) 24
Callinectes sapidus 0.00 0.00 144 0.07 0.02 144 1.75 (0.46) 60 1.37 (0.50) 36
Penaeid Shrimp 2.715 0.27 168 4.37 0.38 168 4.08 (0.42) 72 1.67 (0.40) 48
Size
Sciaenops ocellatus 23.02 3.26 10 8.80 0.51 18 8.3 (0.2) 61 - - -
Lagodon rhomboides 16.10 0.25 247 12.10 0.16 550 16.1 (0.2) 341 16.4 (0.7) 127
Micropogonias undulatus 16.64 0.57 10 12.17 0.16 471 15.6 (0.5) 93 14.6 (0.9) 53
Callinectes sapidus 15.37 0.34 208 9.94 0.28 94 8.0 (0.3) 504 8.0 (0.4) 271
Penaeid Shrimp 24.56 0.27 2688 21.21 0.2 3515 12.2 (0.1) 940 12.7 (0.3) 463
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Figure 3. Mean densities (#/m2) of selected fishes and crustaceans during their peak 
recruitment season from pre-opening (2004) sampling, as well as all post-opening 
sampling (2005, 2007, and 2008).  Samples were not collected in 2008 for S. ocellatus 
due to project completion.  Student’s t-test was performed on the selected fishes and 
crustaceans from 2004 pre-opening versus 2005 post-opening only; ** p < 0.01, *** p < 
0.001.    
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Figure 4. Mean size (mm) of selected fishes and crustaceans during their peak 
recruitment season from pre-opening (2004) sampling, as well as all post-opening 
sampling (2005, 2007, and 2008).  Samples were not collected in 2008 for S. ocellatus 
due to project completion.  Student’s t-test was performed on the selected fishes and 
crustaceans 2004 pre-opening versus 2005 post-opening only; *** p < 0.001.   
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Community Assemblage 
Our community analysis revealed differences in community assemblage seasonally pre- 
versus post-opening.  The MDS analysis had a slightly high stress value (0.17), therefore 
we superimposed the Bray-Curtis analysis to strengthen our interpretation (Clarke and 
Warwick 2001).  The Bray-Curtis cluster analysis superimposed on the MDS plot reveal 
three distinct clusters at the 67% similarity level, with a pre-opening group and three 
post-opening groups (Fig. 5).  The three post-opening groups are grouped generally by 
season over all three years. 
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Figure 5. MDS ordination of nekton density (m-2) from pre- and post-opening samples 
over all seasons.  Densities were averaged among locations by date for a total of 24 
samples from 2004 – 2008. 
 
 
Discussion 
This study was designed to assess the impact of opening a tidal inlet by determining 
density patterns and community structure for estuarine-dependent and estuarine-resident 
species.  We found strong evidence that opening new tidal inlets may have wide-ranging 
impacts on nekton recruitment at both the individual species and community levels.  
Overall, we observed striking differences in density patterns and lengths for many species 
as well as changes to the community structure.  These data show that the opening of tidal 
inlets, particularly tidal inlets at great distances from other inlets, may increase fisheries 
productivity for some ecologically and economically important species that would not 
normally have access to these areas. 
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Nekton density and abundance 
During Phase I of the project, we observed numerous differences in nekton density and 
abundance for a variety of species and these were most likely due to the opening of 
Packery Channel.  Overall, there were fewer nekton present 2005 post-opening, which 
appears to be caused by the decline of Palaemonetes sp. in seagrass habitats directly 
adjacent to the new inlet.  Palaemonetes sp. are an essential part of estuarine 
communities and are found throughout estuaries along the Gulf coast (Morgan 1980).  
Once Packery Channel was opened and flowing, the impact locations adjacent to Packery 
Channel changed from backwater lagoons with little tidal fluctuation to locations with 
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increased tidal energy and current.  With larger tidal fluctuations and flow post-opening 
there were long periods of seagrass exposure, and we observed but did not quantify, a 
decrease (and loss in one area) in seagrass cover in locations nearest the inlet.  
Palaemonetes sp. select for seagrass cover to forage for food and to decrease predation 
(Morgan 1980; Orth et al. 1984). Therefore, the observed seagrass loss in the areas very 
near the inlet most likely caused Palaemonetes sp. mean densities to sharply decrease 
post-opening with fewer seagrass beds available for cover.  The dramatic change in 
Palaemonetes sp. (an estuarine-resident species) densities post-opening with the observed 
loss of seagrass cover, demonstrate that Packery Channel could potentially have a large 
impact on other estuarine-resident and estuarine-dependent species that use seagrass 
meadows as nursery habitat (Sheridan 2004). 
 
There did not appear to be major differences in seasonal fish and crustacean abundances 
during Phase II of the project from 2007 and 2008 in the surrounding habitats of Packery 
Channel.  The relative abundances of fish over each season show little change in 
composition. Gobionellus boleosoma and L. rhomboides were both predominant in the 
winter, spring and summer samples with little change in abundance from 2007 to 2008.  
We only sampled in the fall during 2007 because the project was completed in July 2008.  
However, we found very high abundances of S. ocellatus. Post-opening in 2005 Packery 
Channel was not completely dredged to its contracted depth, therefore in 2007 there was 
much more water flowing, which could be a reason why there were much higher densities 
of this estuarine-dependent species. 
 
We found evidence that suggests density-dependent species are recruiting to the 
previously inaccessible seagrass meadows of the Laguna Madre via Packery Channel 
immediately after opening, and have continued to recruit several years post-opening.  
Sciaenops ocellatus, L. rhomboides, M. undulatus, C. sapidus, and penaeid shrimp all 
have varied seasonal recruitment patterns, but all of these species generally follow the 
same life history pattern where the adults spawn offshore in the Gulf of Mexico, typically 
near tidal inlets.  Their eggs, larvae, and juveniles recruit via tidal inlets into estuarine 
nursery habitats where there are high productivity, survival, and growth rates of juveniles 
to adults (Minello 1999; Beck et al. 2001).  Newly-settled juveniles had very limited 
access to the extensive nursery habitats of the upper Laguna Madre prior to Packery 
Channel due to the great distance (35 km) from the nearest tidal inlet (Aransas Pass to the 
north).  We found evidence suggesting that estuarine-dependent species are recruiting to 
the Laguna Madre via Packery Channel.  For example, before Packery Channel was open 
there were very low densities of M. undulatus present, but in the winter 2005 post-
opening they were one of the most abundant species collected.  We also found continued 
high densities of these estuarine-dependent species in 2007 and 2008 providing very 
strong evidence that Packery Channel provides a means of ingress to the upper Laguna 
Madre.  These data suggest that Packery Channel may result in higher fisheries 
productivity since the nursery habitats of the upper Laguna Madre are now accessible to 
numerous estuarine-dependent species.  Because seagrass meadows typically sustain high 
densities of newly recruiting fisheries species and support rapid growth rates, access to 
these habitats of the upper Laguna Madre may ultimately increase the survival of 
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juveniles that could contribute to adult populations (Rozas and Minello 1998; Minello 
1999; Beck et al. 2001).  
 
Examining the mean size of fish and crustaceans pre- versus post-opening provides 
additional support that estuarine-dependent species are using Packery Channel to access 
the habitats of the upper Laguna Madre.  The species that were able to reach areas near 
Packery Channel before the inlet was open were most likely growing while they were 
dispersing.  Thus, significantly larger individuals of many estuarine-dependent species 
were collected pre-opening in 2004.  All of the estuarine-dependent species examined for 
this study were significantly smaller post-opening in 2005.  Juvenile S. ocellatus settle 
into seagrass meadows between 6-8 mm SL (Holt et al. 1983; Rooker and Holt 1997), 
and were rarely in this size range pre-opening.  However, the mean size of S. ocellatus 
post-opening in the upper Laguna Madre was approximately 9 mm SL suggesting that S. 
ocellatus were recruiting to these habitats via Packery Channel.  L. rhomboides, M. 
undulatus, penaeid shrimp, and C. sapidus were also significantly smaller post-opening, 
and we collected these species at lengths of first settlement post-opening.   This trend 
continued with smaller estuarine-dependent individuals in habitats adjacent to Packery 
Channel in Phase II of the project as well.   These data suggest these estuarine-dependent 
fishes and crustaceans are using Packery Channel as a means of recruitment to the 
nursery grounds of the upper Laguna Madre.  This may increase fishery productivity for 
some of these economically and ecologically important fishery species.  
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Community structure 
We observed changes to community structure with the opening of Packery Channel when 
examining each sampling date.  The overall community change appears to have 
corresponded with the opening of Packery Channel with the arrival of estuarine-
dependent species, providing evidence that these immigrating species are using Packery 
Channel as a means of ingress to the upper Laguna Madre.  Although post-opening 
estuarine-resident species had the most variation in species abundance, our data shows 
that increases in estuarine-dependent species contributed to the overall change in 
community assemblage.   
 
Seasonal migrations of small, juvenile estuarine-dependent species have an impact on the 
communities of the upper Laguna Madre because some species historically have not 
occurred in these seagrass habitats.  Interpretation of the MDS ordination shows evidence 
of increased recruitment of several species post-opening.  Pre-opening all the samples are 
grouped, whereas post-opening there are three groups that are separated seasonally.  
Clearly, the separation of pre- and post-opening samples suggests that we have detected 
the varied recruitment patterns of estuarine-dependent species with changes in species 
assemblages throughout the year with this trend continuing in both 2007 and 2008.  In a 
similar study, Akin et al. (2003) also concluded seasonal occurrence of estuarine-
dependent species is an important factor influencing community assemblages.  These data 
suggest that the increase in estuarine-dependent species may have impacted the 
community structure in seagrass habitats of the upper Laguna Madre. 
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Conclusions 
The opening of Packery Channel has caused changes to nekton densities and overall 
community structure in seagrass habitats of the Laguna Madre.  Overall, this study 
provides evidence that this new tidal inlet provides a means of ingress to the productive 
nursery habitats of the upper Laguna Madre that were previously inaccessible for many 
estuarine-dependent species, such as S. ocellatus, penaeid shrimp, and C. sapidus.  The 
second phase provides additional evidence because we found continued high densities of 
estuarine-dependent species over time, possibly resulting in increased fisheries 
productivity long-term.  This study examined density patterns and community changes, 
but it is also critical to document changes to the functionality of the newly available 
estuarine nursery habitats.  Future studies should examine changes in growth and 
mortality rates, fine- and large-scale movement patterns, and subsequent movement to 
adult population for nekton accessing and using these areas as their nursery grounds. 
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